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Abstract

The integration of discrete choice models with Mixed Integer Linear Programming (MILP)
models provides a better understanding of customers’ preferences to operators while planning
for their systems. However, the formulations associated with the former are highly nonlinear
and non convex. To overcome this limitation, we propose a linear formulation of a general
discrete choice model that can be embedded in any MILP model by relying on simulation. We
characterize a demand-based benefit maximization problem to illustrate the use of this approach.
Despite the clear advantages of this integration, the size of the resulting formulation is high,
which makes it computationally expensive. Given its underlying structure, we use Lagrangian
relaxation to decompose it into two separable subproblems: one concerning the decisions of the
operator, that can be written as a Capacitated Facility Location Problem (CFLP), and the other
the choices of the customers, for which we need to develop additional strategies to decompose
it along the two dimensions that, by design, decompose the problem (the customers and the
draws). Finally, we consider a subgradient method to optimize the Lagrangian dual.
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1 Introduction

The integration of discrete choice models with Mixed Integer Linear Programming (MILP)
models provides a better understanding of the preferences of the customers to the operators
while planning for their systems. Despite its clear advantages, the formulations associated with
choice models are highly nonlinear and non convex, and therefore difficult to include in MILP.

In Pacheco et al. (2017), we overcome this limitation by defining a general framework that
allows to characterize almost any discrete choice model based on the random utility principle
with a linear set of constraints that can be embedded in any MILP formulation. The probabilistic
nature of the choice model is addressed with simulation. For each error term in the utility
function, we draw from its distribution.

This approach can be used to model numerous applications, such as the design of a train timetable
in transportation or the shelf space allocation problem in retail. For the sake of illustration, we
characterize a demand-based benefit maximization problem, where an operator selling services
to a market, each of them at a certain price and with a certain capacity (both to be decided), aims
at maximizing its benefit (difference between the generated revenues and the operating costs).

We consider a case study from the recent literature to deal with the integration of an existing
choice model in the demand-based benefit maximization problem, and to test the extent of
the resulting formulation. The obtained results show that this approach is a powerful tool to
configure systems based on the heterogeneous behavior of customers. However, the disaggregate
representation of customers’ preferences and the linearity of the formulation imply that the
dimension of the problem is high. Hence, solving it exactly is computationally expensive.

Decomposition techniques are convenient here to speed up the solution approach, and represent
an alternative to valid inequalities since they can be applied in a general way. The problem,
by design, can be decomposed along two dimensions: the draws, which represent independent
behavioral scenarios, and the customers, who individually face an optimization problem to
maximize their utility. Furthermore, we can distinguish the decisions to be made by the two
agents involved in the problem: the operator and the customers. We rely on Lagrangian relaxation
in order to define separable subproblems that can be solved more easily than the original one.

The remainder of the paper is organized as follows. Section 2 reviews the integration of choice
and optimization models and the applications of Lagrangian relaxation. Section 3 describes the
demand-based benefit maximization problem. In Section 4, we illustrate the decomposition by
customers and draws, and in Section 5 we analytically describe the subproblems associated with
each agent. Finally, the conclusions and future research are discussed in Section 6.





          

2 Literature review

The integration of choice models into optimization problems is an increasing trend. They allow
to account for demand heterogeneity, as well as other features, such as complex substitution
patterns. Several works can be found in many different applications: Haase and Müller (2013)
in facility location for schools, Talluri and Van Ryzin (2004) in the field of revenue management
and Gilbert et al. (2014) in the context of transportation networks, to cite a few.

In the literature, the probabilistic representation of the choice is either included in a determin-
istic way (the utility is exogenous to the optimization model), or the decision variables of the
optimization problem appear in the utility function (endogenous utility). The latter is more chal-
lenging because it leads to nonlinear and non convex formulations, but captures the interaction
between both models. Moreover, even if inappropriate in reality, various authors place simplistic
assumptions on the choice model to come up with tractable and efficient solutions.

In Pacheco et al. (2017), we propose a mathematical formulation integrating almost any discrete
choice model into MILP. The formulation is linear, to ensure the tractability of the optimization
model, and remains fairly general, as it can be used with practically any choice model and any
MILP model. However, as mentioned in Section 1, the resulting problem is computationally
expensive, and might fail when solving exactly instances with a really high number of customers
or when considering a large number of draws to be as accurate as possible.

Lagrangian relaxation (Fisher, 2004) is a technique that exploits the fact that many difficult MILP
problems can be seen as relatively easy problems complicated by a set of side constraints. These
constraints can be transferred to the objective function with associated parameters (Lagrangian
multipliers), which impose a penalty on violations. The relaxed problem provides an upper
bound (for a maximization problem) on the optimal value of the original problem. To obtain the
tightest bound, a problem on the Lagrangian multipliers (Lagrangian dual) needs to be solved.
This problem is typically solved with an iterative method called subgradient method, which uses
subgradients of the objective function to update the Lagrangian multipliers at each iteration.

In this research, we consider a variant of Lagrangian relaxation, known as Lagrangian decom-
position (Guignard and Kim, 1987). It consists in creating identical copies of some decision
variables, and using each copy in each of the set of constraints that enables to decompose the
problem into several subproblems. This technique is really interesting as it keeps all the original
constraints, and it might lead to a stronger bound than conventional Lagrangian relaxation. For
instance, Ertogral (2008) models the integration of inventory and transportation decisions and
uses Lagrangian decomposition to characterize a subproblem associated with each decision.





          

3 Demand-based benefit maximization

In this section, we summarize the main concepts and notations of the demand-benefit maxi-
mization problem. We refer the reader to Pacheco et al. (2017) for further details. We start by
describing the way in which the choice model is linearized to be included in a MILP program.
To illustrate our approach, we characterize a MILP formulation modeling a benefit maximization
problem. We finally provide some relevant results from the performed case study, which motivate
the usage of decomposition techniques to reduce the computational time.

3.1 Linearization of the choice model

We use a discrete choice model to model the demand. The set of all potential alternatives, called
the choice set, is denoted by C (i), and the population consists of N customers (n > 1). The
preference structure of customers is represented with a utility function, which associates a score
with each alternative i ∈ Cn (the set of alternatives considered by customer n):

Uin = Vin + εin, ∀i ∈ Cn, n, (1)

where Vin denotes the deterministic part of the utility function, which includes everything that
can be modeled by the analyst, and εin the error term, which captures everything that has not
been included explicitly in the model. The behavioral assumption is that customer n chooses
alternative i if the corresponding utility is the largest within the choice set Cn.

We assume that Vin is linear in the endogenous variables (xe) of the modeling framework (the
ones involved in both the choice and the MILP models). This is not required for the derivation
of the choice model, but important in our context for its integration in an MILP formulation.
The probabilistic nature of the choice model is addressed with simulation by generating R draws
from the distribution of the random term εin. In this way, the utility associated with alternative
i ∈ Cn by customer n in scenario r is a linear function of the endogenous variables:

Uinr =

Vin︷                  ︸︸                  ︷∑
k

βkxe
ink + gd

in(xd
in) +ξinr, ∀i ∈ Cn, n, r, (2)

where xd denotes the (exogenous) variables that explain the choice and that are not involved
in the MILP model, and ξinr denotes the r-th draw from the distribution of εin. We model the
choice with the binary variables winr, which take value 1 if alternative i is chosen by individual n

in scenario r, and 0 otherwise. The demand of alternative i ∈ C can therefore be obtained by





          

averaging the sum of the choice variables over R:

Di =
1
R

R∑
r=1

N∑
n=1

winr, ∀i ∈ C. (3)

3.2 Benefit maximization problem

For the sake of illustration, we embed this linear characterization of a discrete choice model
into the demand-based benefit maximization model. We consider an operator that aims at
finding the best strategy in terms of pricing and capacity allocation in order to maximize its
benefit. We assume that it sells services to a market, each of them at a certain price and with a
certain capacity, both to be decided. In a benefit maximization context, we need to account for
competition, since otherwise customers are captive, which makes the problem unbounded. To
this end, we define an opt-out option to capture the customers leaving the market. We denote it
by i = 0 and we assume it is available to all customers (0 ∈ Cn,∀n).

We consider the price as the only endogenous variable in the utility function (2). We define
pin ∈ R as the price that customer n must pay to access service i > 0. The capacity ci of service
i > 0 is modeled in a discrete fashion by defining a list of Q feasible values for the capacity:
ci1, . . . , ciQ, from which at most one can be chosen (i.e., it is still possible for the operator not to
offer a service). Thus, service i is duplicated Q times, each instance being associated with the
same utility function, but with a different capacity level. We represent this decision with the
binary variables yiq, which take value 1 if service i is offered with capacity ciq, and 0 otherwise.

The objective function calculates the difference between the expected gains obtained from each
service i > 0 and the associated operating costs. The expected gain obtained from service i > 0
is denoted by Gi, and can be derived directly from the demand expression (3) and the price
specification. However, this introduces a nonlinearity due to the product of the variables winr

and pin. This product can be easily linearized if an upper bound for the latter is known, which in
this case can be set by the operator. We define the variable ηinr to capture the product winr pin.

We assume that the operating cost of service i > 0 at capacity level ciq is composed of a fixed
cost associated with operating the service ( fiq) and a variable cost associated with each sold unit
of the service (viq). The resulting objective function is the following:

∑
i>0

[ Gi︷                ︸︸                ︷
1
R

Q∑
q=1

N∑
n=1

R∑
r=1

ηiqnr −

Ci︷                 ︸︸                 ︷
Q∑

q=1

(
fiq + viqciq

)
yiq

]
. (4)





          

Note that the variables ηiqnr model the product wiqnr pin, and are the natural extension of the
variables ηinr when accounting for the different capacity levels, i.e., when defining the Q

duplicates of each alternative i > 0. This distinction is not necessary for the utility variables Uinr,
as utility remains the same across capacity levels.

Table1 summarizes the main notations used in the model for the reader’s convenience, organized
by sets, parameters, variables and aggregated quantities. The complete formulation of the
demand-based benefit maximization problem is included in Figure 1.

Name Description

Se
ts

C Set of all potential services (indexed by i > 0, i = 0 denotes the opt-out option)

J Number of services in C

N Number of customers in the population (indexed by n ≥ 1)

R Number of draws from the distribution of εin (indexed by r)

Q Number of capacity levels (indexed by q)

Pa
ra

m
et

er
s

ciq Capacity of service i for the q-th level

ξinr Draw from the distribution of εin

`inr Lower bound on Uinr

minr Upper bound on Uinr

`nr Smallest lower bound `inr across services

mnr Largest upper bound minr across services

Minr minr − `nr

Mnr mnr − `nr

ciq Capacity level q associated with service i

ain Lower bound on pin

bin Upper bound on pin

fiq Fixed cost associated with service i at capacity level ciq

viq Cost per unit sold of service i at capacity level ciq

Va
ri

ab
le

s

Uinr Utility associated with service i by customer n in scenario r

yiq 1 if service i is offered with capacity level ciq, 0 otherwise

yiqn 1 if service i is offered with capacity level ciq to individual n, 0 otherwise

yiqnr 1 if service i with capacity level ciq is available to individual n in scenario r, 0 otherwise

ziqnr Uinr if yiqnr = 1, and `nr if yiqnr = 0

wiqnr 1 if (i, q) = argmax{Unr}, and 0 otherwise

Unr maxi,q ziqnr

pin Price that individual n has to pay to access service i

ηiqnr pinwiqnr

Q
ua

nt
. Di Expected demand of service i

Gi Expected gain obtained from service i > 0

Ci Total cost associated with service i > 0

Table 1: Main notations used in the demand-based maximization problem





          

max
∑
i>0

[ Gi︷                ︸︸                ︷
1
R

Q∑
q=1

N∑
n=1

R∑
r=1

ηiqnr −

Ci︷                 ︸︸                 ︷
Q∑

q=1

(
fiq + viqciq

)
yiq

]
(4)

subject to Uinr = βin pin + gd
in(xd

in) + ξinr ∀i ∈ Cn, n, r (2)

yiqn ≤ yiq ∀i > 0, q, n (5)

yiqn = 0 ∀i < Cn, q, n (6)

yiqnr ≤ yiqn ∀i > 0, q, n, r (7)
Q∑

q=1

yiq ≤ 1 ∀i > 0 (8)

`nr ≤ ziqnr ∀i, q, n, r (9)

ziqnr ≤ `nr + Minryiqnr ∀i, q, n, r (10)

Uinr − Minr(1 − yiqnr) ≤ ziqnr ∀i, q, n, r (11)

ziqnr ≤ Uinr ∀i, q, n, r (12)

ziqnr ≤ Unr ∀i, q, n, r (13)

Unr ≤ ziqnr + Mnr(1 − wiqnr) ∀i, q, n, r (14)∑
i∈C

Q∑
q=1

wiqnr = 1 ∀n, r (15)

wiqnr ≤ yiqnr ∀i > 0, q, n, r (16)
n−1∑
m=1

wiqmr ≤ (ciq − 1)yiqnr + (n − 1)(1 − yiqnr) ∀i > 0, q, n > ciq, r (17)

ciq(yiqn − yiqnr) ≤
n−1∑
m=1

wiqmr ∀i > 0, q, n, r (18)

ainwiqnr ≤ ηiqnr ∀i > 0, q, n, r (19)

ηiqnr ≤ binwiqnr ∀i > 0, q, n, r (20)

pin − (1 − wiqnr)bin ≤ ηiqnr ∀i > 0, q, n, r (21)

ηiqnr ≤ pin − (1 − wiqnr)ain ∀i > 0, q, n, r (22)

Figure 1: Demand-based benefit maximization problem

Constraints (5)–(8) have to do with the availability of the services. The variables yiqn model the
availability at operator level, and take value 1 if the operator decides to offer service i > 0 to
customer n at capacity level ciq. The variables yiqnr model the availability at scenario level, and
take value 0 when the capacity has been reached. We assume an exogenously given priority list
of customers to decide who has access to a certain service when its demand is larger than its





          

capacity. This list simply determines the order in which customers are processed.

In order to avoid that an unavailable service is chosen, we introduce the concept of discounted
utility (ziqnr), which is the utility itself if the service is available, and a low value otherwise.
Constraints (9)–(12) provide a linear representation of this definition, and constraint (16) sets
the choice variables to 0 in case of unavailability. We also define the variable Unr to capture
the highest discounted utility across alternatives and capacity levels for each customer n and
scenario r. This maximum is linearly characterized with constraints (13)–(14). Constraint (15)
imposes that only one service can be chosen by customer n in scenario r.

Constraints (17)–(18) deal with the capacity allocation. More precisely, the former is binding
when the capacity has been reached, and set the variables yiqnr to 0 so that the service is not
accessible, whereas the latter is active when the capacity has not been reached by setting the
variables yiqnr to 1. Finally, constraints (19)–(22) linearize the product ηiqnr = wiqnr pin.

3.3 Computational results

For the proof-of-concept, we consider the case study of a parking services operator (Ibeas et al.,

2014), where the authors characterize a mixture of logit models to describe the behavior of
potential car park users when choosing a parking place. For the sake of illustration, we consider
a sample of N = 50 customers and R = 50 draws. The choice set consists of three services:
paid on-street parking (PSP), paid parking in an underground car park (PUP) and free on-street
parking (FSP), which is considered as the opt-out option (it does not provide any revenue).

In one of the experiments performed in Pacheco et al. (2017), we test two different approaches
concerning the potential services: (1) the operator can decide if the services are offered or not,
and (2) it is forced to offer all services. In both cases, the price and the capacity of PSP and PUP
are to be decided by the model. Table 2 shows the complexity of these models with respect to
the solution time: almost 19 hours for approach 1 and almost 34 for approach 2. The difference
in time between approaches comes from the different flexibility being assumed. In terms of
benefit, the first approach is more profitable, as expected, because the operator can freely decide
on its resources.

Solution Capacity Demand Prices
Approach time (h) PSP PUP PSP PUP FSP PSP PUP Benefit

(1) 18.7 20 - 19.4 - 30.6 0.76 - 6.27
(2) 33.7 15 5 14.8 4.56 30.7 0.76 1.32 4.99

Table 2: Price and capacity allocation for approaches 1 and 2





          

4 Decomposition by customers and draws

As introduced in Section 1, there are two dimensions along which the problem can be decom-
posed: the customers and the draws. The formulation in Figure 1, however, cannot be directly
decomposed in independent subproblems for each customer n and scenario r, as all the customers
and draws are combined together in the objective function, and the customers are also coupled
in the capacity constraints.

In this section, we include the decomposition of a simplified version of the demand-based benefit
maximization problem to illustrate the decomposition by customers and draws. More precisely,
we assume unlimited capacity for all services, i.e., there is room for all customers in all services;
and we set the operating costs to 0, which converts the problem into a revenue maximization
problem. We define this decomposition strategy as a first step to decompose more complex
versions of the problem: including capacity, operating costs, etc. We are currently investigating
the demand-based revenue maximization problem for the capacitated case.

Formulation In the uncapacitated case, ciq = ∞,∀i > 0, q, which enables us to get rid of the
following elements: the index q; the variables yinr and zinr, as they are related to the availability of
the services due to capacity restrictions; and constraints (7), (9)–(12), and (16)–(18). Constraints
(13)–(14) can be directly written in terms of the utility variables Uinr. Moreover, the zero cost
assumption allows us to dispense with the variables yiq and yiqn. Indeed, the former are not
needed as the capacity is given, and the latter can be ignored as the services are offered to all
customers because we do not consider the associated costs.

The resulting formulation can be found in Figure 2. The objective function (25) is the sum of
the revenues obtained from all services, constraint (2) represents the utility function, constraint
(15) ensures that only one service is chosen per customer and draw, constraints (19)–(22) are
the linearizing constraints of the product ηinr = pinwinr, and constraints (26)–(27) characterize
the highest utility by means of the utility variables Uinr.

The variables of this problem are: ηinr, Uinr, pin, Unr and winr. We notice that pin does not let
us to decompose the problem into independent subproblems for each customer n and scenario
r, since the price is the same across draws. In order to overcome this limitation, we create R

copies of this variable, we denote them by pinr, and we add the following constraints:

pinr = pinR, ∀i > 0, n, r = 1, (23)

pinr = pin(r−1), ∀i > 0, n, r > 1. (24)





          

We replace pin by pinr in constraints (2) and (21)–(22), and we relax constraints (23)–(24) by
transferring them to the objective function with associated Lagrangian multipliers λinr ∈ R,∀i >

0, n, r. The resulting problem is included in Figure 3. In order to provide a compact expression
for the objective function, pin0 (obtained when r = 1) represents pinR.

max
∑
i>0

1
R

N∑
n=1

R∑
r=1

ηinr (25)

subject to Uinr = βin pin + gd
in(xd

in) + ξinr ∀i ∈ Cn, n, r (2)∑
i∈C

winr = 1 ∀n, r (15)

ainwinr ≤ ηinr ∀i > 0, n, r (19)

ηinr ≤ binwinr ∀i > 0, n, r (20)

pin − (1 − winr)bin ≤ ηinr ∀i > 0, n, r (21)

ηinr ≤ pin − (1 − winr)ain ∀i > 0, n, r (22)

Uinr ≤ Unr ∀i, n, r (26)

Unr ≤ Uinr + Mnr(1 − winr) ∀i, n, r (27)

Figure 2: Demand-based revenue maximization problem (uncapacitated case)

max
∑
i>0

1
R

N∑
n=1

R∑
r=1

ηinr +
∑
i>0

N∑
n=1

R∑
r=1

λinr(pinr − pin(r−1)) (28)

subject to Uinr = βin pinr + gd
in(xd

in) + ξinr ∀i ∈ Cn, n, r (2)

Uinr ≤ Unr ∀i, n, r (26)

Unr ≤ Uinr + Mnr(1 − winr) ∀i, n, r (27)∑
i∈C

winr = 1 ∀n, r (15)

ainwinr ≤ ηinr ∀i > 0, n, r (19)

ηinr ≤ binwinr ∀i > 0, n, r (20)

pinr − (1 − winr)bin ≤ ηinr ∀i > 0, n, r (21)

ηinr ≤ pinr − (1 − winr)ain ∀i > 0, n, r (22)

Figure 3: Lagrangian relaxation for the demand-based revenue maximization problem (uncapac-
itated case)

We can now characterize a subproblem for each customer n and draw r. The objective function
of each subproblem consists of the corresponding ηinr variable (weighted by 1/R) and the terms





          

depending on the associated pinr variables. Figure 4 shows the resulting subproblem for a given
n and r, where λin(R+1) (obtained when r = R) represents λin1.

max
∑
i>0

[
1
R
ηinr + (λinr − λin(r+1))pinr

]
(29)

subject to Uinr = βin pinr + gd
in(xd

in) + ξinr ∀i ∈ Cn (30)

Uinr ≤ Unr ∀i (31)

Unr ≤ Uinr + Mnr(1 − winr) ∀i (32)∑
i∈C

winr = 1 (33)

ainwinr ≤ ηinr ∀i > 0 (34)

ηinr ≤ binwinr ∀i > 0 (35)

pinr − (1 − winr)bin ≤ ηinr ∀i > 0 (36)

ηinr ≤ pinr − (1 − winr)ain ∀i > 0 (37)

Figure 4: Subproblem associated with customer n and scenario r for the demand-based revenue
maximization problem for the uncapacitated case

Algorithm For given values of the multipliers λinr, the subproblem in Figure 4 can be directly
solved with a commercial software like Gurobi or CPLEX. In this case, we address the combina-
torial nature of the problem with enumeration to come up with linear problems (LP). Briefly, for
each customer and draw, we iterate over the services in Cn, and at each iteration we assume that
service i is chosen. Under this assumption, the problem (38)–(41) needs to be solved.

max
( 1
R

+ λinr − λin(r+1)

)
pinr +

∑
j∈Cn, j,i

(λ jnr − λ jn(r+1))p jnr (38)

subject to Uinr ≥ U jnr ∀ j ∈ Cn, j , i (39)

p jnr ≥ a jn ∀ j ∈ Cn (40)

p jnr ≤ b jn ∀ j ∈ Cn (41)

We notice that such a problem can be infeasible if it does not exist any price between the bounds
that makes service i to be the one with the highest utility. Nevertheless, even if the problem
(38)–(41) is infeasible ∀i > 0, the LP associated with the opt-out option is always feasible.
Therefore, service i will be chosen by customer n in scenario r if its objective function is the
highest among the feasible LPs, and its price, as well as the prices for the unchosen services, are
determined when solving the LP associated with this service.





          

Subgradient method As mentioned in Section 2, an iterative method is used to update the
values of the Lagrangian multipliers, i.e., to solve the Lagrangian dual. The main steps of the
subgradient method are the following:

1. Initialization: set a number of iterations K, initialize k = 0 and choose starting values for
the Lagrangian multipliers. λ0

inr = 0,∀i > 0, n, r
2. Subgradients: obtain subgradients sk

inr = pk
inr − pk

in(r−1),∀i > 0, n, r, of the objective
function (28) at λk

inr. If sk
inr = 0,∀i > 0, n, r, then STOP (the optimal value has been

reached).
3. Update: compute the Lagrangian multipliers for the following iteration:

λk+1
inr = λk

inr + γksk
inr, ∀i > 0, n, r. (42)

4. Stopping criteria: increment k; if k = K, then STOP, otherwise go to step 2.

The step size is denoted by γk and enables to follow the subgradient at the current position in
order to reach points with a lower function value. Its definition is of crucial importance because
the speed of convergence depends strongly on it. There exist several approaches in the literature
to define the step size. In the following, we consider the simple step size

γk =
1

k + 1
, ∀k, (43)

and the formula proposed by Held et al. (1974) for adapting the step size

γk = µk Z∗ − Z(λk)∑
i>0

∑N
n=1

∑R
r=1(sk

inr)2
, ∀k, (44)

where Z∗ is the value of the best solution for the original problem found so far, Z(λk) is the
current value of the objective function of the Lagrangian dual, and µk is a decreasing adaption
parameter with 0 ≤ µ0 ≤ 2. In our case, we start with µ0 = 1 and we reduce it by a factor of
2 whenever Z(λk) has failed to decrease in the last 2 iterations. For the sake of illustration, we
use the optimal value of the objective function of the exact method as Z∗, but it can initially be
set to 0 and then updated using the solutions that are obtained in those iterations in which the
Lagrangian problem solution turns out to be feasible in the original problem.

Preliminary results We use the case study defined in Section 3.3 to perform some preliminary
experiments. We first solve the exact method (Figure 2), and we then consider the Lagrangian
relaxation approach with the two different step sizes mentioned above. For each iteration of
the Lagrangian decomposition scheme, we iterate over the customers and the draws, and for
each customer n and scenario r, we solve the corresponding subproblem with the algorithm





          

described previously. The Lagrangian multipliers are updated with the subgradient method, and
the procedure finishes as soon as any of the two above mentioned stopping criteria is satisfied.

Table 3 shows the computational time and the obtained revenues for the exact method (solved
with CPLEX) and for the Lagrangian decomposition with K = 50 and both step sizes. All
the experiments were performed with a 2.5 GHz Intel Core i7 processor. For a small number
of draws (R = 25), the exact method is faster than the Lagrangian decomposition technique,
but for larger values of R, the solution time is remarkably lower. Furthermore, the growing in
computational time with the Lagrangian relaxation method is controlled, in the sense that each
iteration of the method has a similar cost. At first glance, the values of the revenue are in line to
those obtained with the exact method, but a proper assessment is needed. We highlight the fact
that a high number of draws, that previously with the exact method could not be considered due
to computational limitations, can be considered now.

Solution time (s) Revenue
R Exact (43) (44) Exact (43) (44)

25 39.65 46.93 47.38 28.68 27.50 28.77
50 217.10 94.54 93.05 28.26 28.56 29.26
75 368.58 139.58 142.18 27.64 28.09 28.85

Table 3: Solution times and revenue for the demand-based revenue maximization problem for
the uncapacitated case

In terms of the expected demand, we observe some discrepancies in Table 4. More precisely,
for both step sizes, the demand of PSP is underestimated, whereas the demand of the opt-out
option is clearly higher than the one obtained with the exact method. Between step sizes, the
one defined in (44) provides closer values. We also include the share of subgradients that are
equal to 0, which indicates the percentage of duplicates of the price variables that are the same
among them. We observe that the shares are low, but we need to take into account that the price
is a continuous variable, and equality is hard to be satisfied. For future experiments, we should
define a threshold under which two price variables are considered the same.

Demand PSP Demand PUP Demand FSP Zero subgradients (%)
R Exact (43) (44) Exact (43) (44) Exact (43) (44) (43) (44)

25 18.4 13.8 15.3 17.2 16.0 15.8 14.4 20.1 18.8 21.0 21.3
50 20.5 13.8 15.2 16.0 17.1 16.6 13.5 19.1 18.2 21.9 21.8
75 18.8 13.5 14.7 16.6 16.9 16.7 14.6 19.6 18.7 22.1 22.5

Table 4: Expected demand for each service and share of zero subgradients for the demand-based
revenue maximization problem for the uncapacitated case





          

5 Decomposition by operator and customers

The technique described in Section 4 illustrates the procedure to decompose the demand-based
revenue maximization problem for the uncapacitated case by customer and draw. The inclusion
of capacity restrictions and/or operating costs associated with the services will make the problem
much more difficult, and the decompositon by both customer and draw might fail. As mentioned
above, we are currently exploring additional decomposition strategies for such problems.

The ultimate goal is to use these strategies within the general Lagrangian relaxation method
for the demand-based benefit maximization problem. As mentioned in Section 1, this problem
contains decisions concerning two different agents: the operator and the customers. The former
wants to decide on the price and the capacity of the potential offered services, whereas the latter
are willing to pay a certain price to access their preferred service, in the sense that if this price is
not appropriate, they might leave the market.

We can therefore define a Lagrangian decomposition scheme composed of two subproblems:
one concerning the decisions of the operator (the operator subproblem) and one the decisions of
the customers (the customer subproblem). In order to separate the formulation in Figure 1 into
these subproblems, we identify the constraints associated with each of them:

• Operator subproblem: (5), (8), (19)–(22), and
• Customer subproblem: (2), (6)–(7), (9)–(18), (19)–(22).

We note that constraints (19)–(22) belong to both subproblems because price is the endogenous
variable of this formulation. The following variables are common in both subproblems: yiqn,
yiqnr, wiqnr, pin and ηiqnr. Since duplicating all the variables to define two separable subproblems
will complicate the Lagrangian relaxation approach, we consider the following procedure:

1. Duplicate the choice variables: w′iqnr = wiqnr,∀i, q, n, r. We note that this constraint is
equivalent to constraints (45)–(46):

wiqnr ≤ w′iqnr, ∀i, q, n, r, (45)∑
i∈C

Q∑
q=1

w′iqnr = 1, ∀n, r. (46)

The advantage of constraints (45)–(46) is twofold:
a) the replacement of the equality by the inequality in (45) introduces non-negative

Lagrangian multipliers (instead of unconstrained ones), and
b) the introduction of redundant assignment constraints (46) strengths the Lagrangian





          

subproblem.
2. Replace constraint (5) (which contains the variables yiqn, that are common in both sub-

problems, and yiq, that are only in the operator subproblem) by the following constraint
linking the duplicate of the choice variables w′iqnr and the yiq variables:

w′iqnr = wiqnr
(16)
≤ yiqnr

(7)
≤ yiqn

(5)
≤ yiq, ∀i > 0, q, n, r. (47)

3. Include constraints (19)–(22) only in the customer subproblem.

With this procedure, we can separate the demand-based benefit maximization problem into two
subproblems that depend on disjointed sets of variables:

• Operator subproblem: variables yiq and w′iqnr, and constraints (8), (46)–(47), and
• Customer subproblem: variables yiqn, yiqnr, Uinr, ziqnr, Unr, wiqnr, pin and ηiqnr, and con-

straints (2), (6)–(7), (9)–(22).

The objective function associated with each subproblem is obtained by transferring constraint
(45) with non-negative Lagrangian multipliers θiqnr,∀i, q, n, r:

Z(θ) =
∑
i>0

Gi −Ci +
∑
i∈C

Q∑
q=1

N∑
n=1

R∑
r=1

θiqnr(w′iqnr − wiqnr) =

=

Zc(θ)︷                                                         ︸︸                                                         ︷∑
i>0

Q∑
q=1

N∑
n=1

R∑
r=1

1
R
ηiqnr −

∑
i∈C

Q∑
q=1

N∑
n=1

R∑
r=1

θiqnrwiqnr

Zo(θ)︷                                                            ︸︸                                                            ︷
−

∑
i>0

Q∑
q=1

( fiq + viqciq)yiq +
∑
i∈C

Q∑
q=1

N∑
n=1

R∑
r=1

θiqnrw′iqnr, (48)

where the term denoted by Zo(θ) corresponds to the operator subproblem and the term Zc(θ) to
the customer subproblem.

Operator subproblem We note that with the current formulation of the operator subproblem,
w′iqnr is not set to 0 when i < Cn. Thus, we need to add the following constraint to set the
duplicates of the choice variable to 0 when the service is not considered by the customer:

w′iqnr = 0, ∀i < Cn, q, n, r. (49)

Furthermore, we can add the following valid inequality to the model to ensure that the capacity





          

of facilities is not exceeded:

N∑
n=1

w′iqnr ≤ ciqyiq, ∀i > 0, q, r. (50)

This enables us to express the operator subproblem as an extension to the classical Capacitated
Facility Location Problem (CFLP), where:

• C represents the set for the potential locations for the facilities,
• N represents the index for the set of users,
• yiq represent the location decision variables, and
• w′iqnr represent the allocation decision variables.

The operator subproblem written as a CFLP is included in Figure 5.

max Zo(θ) =
∑
i∈C

Q∑
q=1

N∑
n=1

R∑
r=1

θiqnrw′iqnr −
∑
i>0

Q∑
q=1

( fiq + viqciq)yiq (51)

subject to
Q∑

q=1

yiq ≤ 1 ∀i > 0 (7)

∑
i∈C

Q∑
q=1

w′iqnr = 1 ∀n, r (46)

w′iqnr ≤ yiq ∀i > 0, q, n, r (47)

w′iqnr = 0 ∀i < Cn, q, n, r (49)
N∑

n=1

w′iqnr ≤ ciqyiq ∀i > 0, q, r (50)

Figure 5: Operator subproblem for the demand-based benefit maximization problem

The objective function can be interpreted as the maximization of the net profit by the operator,
which is defined as the difference between the revenuem generated from the serviced customers
and the cost of the location of the selected facilities. Constraints (46) are equivalent to the ones
in the CFLP guaranteeing that each customer is served from one facility. Constraints (50) play
a double role in the CFLP: they ensure that the capacity of facilities is not exceeded and they
prevent users from being allocated to non-open facilities. Constraints (7) and (49) are necessary
for our context but could also be part of a CFLP with equivalent characteristics.

Even if the CFLP is NP-hard, solving directly the MILP might work for small instances, and
there exist several works in the literature to solve it. One example is Lagrangian relaxation,
which in this case consists on relaxing the assignment constraints (46).





          

Customer subproblem The subproblem dealing with the choices of the customers is defined
in Figure 6, and it contains all the remaining information. A decomposition strategy in a similar
fashion than the one defined in Section 4 can be characterized to tackle this problem.

max Zc(θ) =
∑
i>0

Q∑
q=1

N∑
n=1

R∑
r=1

1
R
ηiqnr −

∑
i∈C

Q∑
q=1

N∑
n=1

R∑
r=1

θiqnrwiqnr (52)

subject to yiqn = 0 ∀i < Cn, q, n (6)

yiqnr ≤ yiqn ∀i > 0, q, n, r (7)

Uinr = βin pin + gd
in(xd

in) + ξinr ∀i, n, r (2)

`nr ≤ ziqnr ∀i, q, n, r (9)

ziqnr ≤ `nr + Minryiqnr ∀i, q, n, r (10)

Uinr − Minr(1 − yiqnr) ≤ ziqnr ∀i, q, n, r (11)

ziqnr ≤ Uinr ∀i, q, n, r (12)

ziqnr ≤ Unr ∀i, q, n, r (13)

Unr ≤ ziqnr + Mnr(1 − wiqnr) ∀i, q, n, r (14)∑
i∈C

Q∑
q=1

wiqnr = 1 ∀n, r (15)

wiqnr ≤ yiqnr ∀i > 0, q, n, r (16)
n−1∑
m=1

wiqmr ≤ (ciq − 1)yiqnr + (n − 1)(1 − yiqnr) ∀i > 0, q, n > ciq, r (17)

ciq(yiqn − yiqnr) ≤
n−1∑
m=1

wiqmr ∀i > 0, q, n > 1, r (18)

ainwiqnr ≤ ηiqnr ∀i > 0, q, n, r (19)

ηiqnr ≤ binwiqnr ∀i > 0, q, n, r (20)

pin − (1 − wiqnr)bin ≤ ηiqnr ∀i > 0, q, n, r (21)

ηiqnr ≤ pin − (1 − wiqnr)ain ∀i > 0, q, n, r (22)

Figure 6: Customer subproblem for the demand-based benefit maximization problem

6 Conclusions and future work

As mentioned in Section 4, we are currently running additional experiments to assess the
validity of the Lagrangian relaxation approach, and we are working on the characterization
of other decomposition strategies for more complex versions of the demand-based revenue





          

maximization problem for the uncapacitated case, such as those including a finite capacity
and/or the associated operating costs. The final idea is to integrate such strategies with the
decomposition scheme by agent-based decisions described in Section 5, which is the procedure
addressing the demand-based benefit maximization problem.

Once the decomposition scheme is fully characterized, we are planning to test the formulation in
large instances (with a high number of individuals and a high number of draws to be as accurate
as possible) where the exact method would fail. Moreover, in order to obtain closer results, we
need to refine the subgradient method by increasing the number of iterations and by considering
more appropriate step size calculations.
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