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Abstract

For self-driving cars and autonomous delivery platforms, one of the crucial steps to safe and
seamless integration of these platforms is a human trajectory prediction module. While self-
driving cars reach good performances in urban environments, crowded scenarios require a more
accurate prediction of human-human and human-space interactions. Recent approaches perform
the motion forecasting by using only coordinates and velocities of the pedestrians. Inherently,
some things are impossible to predict with this representation, e.g., when a pedestrian starts
walking or if people recognize and consequently walk towards each other. This work adds
human pose information and human activity labels as features to allow a new way of forecasting
pedestrian movements. For every human, a time series of bounding boxes, poses, and activities
are used to train a Long-Short Term Memory (LSTM) network to predict a future time series of
bounding box coordinates. Further experiments will be performed to analyze if predictions for
activities and poses are feasible. The LSTM is trained and validated with annotated volleyball
and basketball images. In the future, this work should be validated for a broad and general use
in human trajectory forecasting.
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1 Introduction

Self-driving cars have great potential to avoid accidents and to make mobility accessible for
demographic groups as children, elder people and disabled people who currently have to rely on
public transport. Autonomous delivery platforms can potentially relieve the stress of carrying
heavy luggage while guiding to a specific location simultaneously. For both, self-driving cars
and autonomous delivery platforms, one of the crucial steps to safe and seamless integration of
these platforms is a human trajectory prediction module.

Self-driving cars reach good performances in urban environments like in Palo Alto where
the few pedestrians that cross the roads use crosswalks and traffic lights. The task is much more
complicated in cities like Paris where sometimes no lane markings exist, and yet multiple lane
roundabouts are used and at the same time a lot of tourist cross the street. Another complex
scenario is a university campus, where pedestrians often do not follow any traffic rules and in
practice cars have to be compliant with these unwritten rules. Regardless of these difficulties, it
is still feasible for a human driver to foresee pedestrian actions in the given scenarios. Hence, a
machine should have the same ability to develop intuition.
Consequently, crowded scenarios require a more accurate prediction of human-human and
human-space interactions.

2 Related Work

Recent works have already attempted to predict future human actions:

Helbing and Molnar (1995) modeled human-human interactions based on a social-force model
that uses attractive and repulsive forces. This approach has been adapted for robotics by Luber
et al. (2010) and further been used in Leal-Taixe et al. (2014), Leal-Taixe et al. (2011) and
Mehran et al. (2009) for scene understanding.

Similar models as developed by Treuille et al. (2006) use continuum dynamics to model human
behavior, whereas Wang et al. (2008) and Tay and Laugier (2008) use Gaussian Processes for the
human-human interactions. Antonini et al. (2004) predicts human motion behavior based on a
discrete choice model. Yi et al. (2015) predicts motion with particular consideration of stationary
groups. Yamaguchi et al. (2011) utilizes an agent-based behavioral model for prediction.





    

In addition to modeling interactions, a large set of works forecast human movement by clustering
trajectories, e.g. Kim et al. (2011), Morris and Trivedi (2011) and Zhou et al. (2011).

In contrast to the approaches above, Kitani et al. (2012) uses optimal control theory to predict
human interactions with their surrounding space.

Ziebart et al. (2011) predicts movement by a planning-based approach. Turek et al. (2010)
developed a similar approach using a functional map of a scene.

Trautman et al. (2013) attempts to encourage humans to interact with autonomous robots rather
than just predicting their movement.

Hochreiter and Schmidhuber (1997) developed the Long Short-Term Memory (LSTM) that
has been shown to be useful for a variety of sequence predictions: Yunpeng et al. (2017),
Althelaya et al. (2018), Tian and Pan (2015), Troiano et al. (2018), Xu et al. (2017), Vinayakumar
et al. (2017).

Alahi et al. (2016) use LSTMs to predict individual motion behavior while pooling the informa-
tion after each step.

All of these approaches represent a pedestrian by its coordinates and velocities. A great advantage
of this representation is that the problem is transformed into a sequence prediction problem
where priors on the dynamic can be used.

However, one task that is barely solved is, to estimate abrupt non-linear behaviors. Pedestrians
suddenly slow down, stop, start to move again etc. In this work, we argue that we need to go
beyond modeling pedestrians coordinates but integrate richer visual information such as their
poses or the perceived actions in the forecasting framework.

3 Use Richer Visual features

Some behaviors are inherently impossible to predict given just pedestrians coordinates. Richer
visual information is needed. For instance, gestures like waving at each other, i.e., human poses,
might influence the dynamics of people. Additionally, cues like where pedestrians are looking
at, i.e., human attention, or what they are doing, i.e., human actions, could help better predict
their behavior.





    

Consequently, the goal of this project is to study which additional information is relevant to
better predict human behavior and how to effectively model it. We will study multiple neural
network architectures that learn to predict human behavior given rich visual information.

In this work, we focus on studying how human actions can improve motion predictability.
The activity labels are extracted from the dataset created by (Bagautdinov et al. (2017)). Given
video data, a time series of bounding boxes and activities are extracted for every humans as
input (observed features) to train a Long Short-Term Memory (LSTM) network to predict the
future coordinates. We still frame our problem as a time series prediction problem. As shown
by Alahi et al. (2016) LSTM networks are capable of learning human motion behavior and
therefore suitable for the given prediction problem.

4 Dataset

One of the challenges of this project is to identify labeled data that can be used for the training
and testing of the proposed algorithms. More precisely, labels on human actions are needed
in addition to human coordinates. To the best of our knowledge, Bagautdinov et al. (2017) is
the only dataset that track humans in space and have annotated their actions as well as their
collective activities.

1 shows part of a sample frame of the dataset. The bounding box and action labels are annotated
based on the given ground truth information.

The nine different possible labels are: ’blocking’, ’digging’, ’falling’, ’jumping’, ’moving’,
’setting’, ’spiking’, ’standing’ and ’waiting’.

Furthermore, each frame has been processed by OpenPose a framework developed by Cao et al.

(2017), Simon et al. (2017) and Wei et al. (2016) which is capable of extracting human poses
from image data.

Although the pose provides more accurate information, it will not be considered in the following.
Concepts using only one human action, e.g. generated by a classifier as presented in Bagautdinov
et al. (2017), have the potential be more efficient as they only add one state variable to the
coordinates rather than one variable for each joint in the pose.





    

Figure 1: Example Frame from Dataset processed with OpenPose
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Source: Based on ground truth and data set by Bagautdinov et al. (2017) processed with
OpenPose by Cao et al. (2017)

Although the context is a volleyball game, we can still study our claims and compare our
algorithms given ground truth data. Our future work includes collecting a dataset in an urban
setting.

5 Potential neural network architectures

This report presents multiple recurrent neural network architectures based on the Long Short-
Term Memory (LSTM) architecture by Hochreiter and Schmidhuber (1997) to handle the
contextual information that is required for the desired approach. All architectures use spatial
information and activity labels based on the recorded video sequences. The sequences are sliced
into two parts - one as LSTM input and the other one as ground truth for the training of the
LSTM - consisting of 20 frames each. The scenes are further divided into scenes that are used
for training and scenes that are used for validation of the prediction.

We want to predict the position of the player for the next 20 frames based on the informa-





    

tion of the last 20 frames.

The proposed architectures share a common overall structure: The input is reshaped and then
fed into a layer of LSTMs which is followed by a fully connected layer. This architecture is
shown in 2

Figure 2: Basic LSTM Architecture
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One LSTM can trained for each player in the recorded sequence based on spatial information.
As we use x and y coordinates as well as one variable describing the action of the player, we
have three input variables per frame and sample.

While in this architecture each LSTM has the ability of learning individual human behavior it
will most likely not learn the human-human interactions. In Bagautdinov et al. (2017) a joint
LSTM is used for action classification. A joint LSTM for prediction could reason based on
the relative spatial positions and the distance between players. Instead of training the LSTM
individually for each player, the network has potential to learn the entire positioning of the
players on the field.

In comparison to the individual LSTM approach, it requires more data for training as the network
has more connections and additionally every frame can only be used once for the entire team in
contrast to the individual LSTM where each frame can be used once for each player.





    

Figure 3: Deep LSTM Architecture
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As a variation of the basic architecture, we can attempt to make the architecture deeper in order
to recombine the learned representation from prior layers and create new representations at high
levels of abstraction as shown in 3

A different kind of architecture with a similar intention are stacked LSTMs as shown in 4.
Stacked LSTMs have been used by Graves et al. (2013) and achieved outstanding results for the
challenging standard problem of speech recognition. Stacked LSTMs add levels of abstraction
of input observations over time.

To be able to learn abstract behavior as well as patterns over time, we finally combine the last
two approaches which results in a stacked LSTM with multiple fully connected layers. This
architecture is shown in 5

All architectures are implemented by using Tensorflow (Abadi et al. (2015)) and Keras (Chollet
et al. (2015)) for Python.





    

Figure 4: Stacked LSTM Architecture
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Figure 5: Deep Stacked LSTM Architecture
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6 Preliminary Results

The performance is tested for each presented architecture on the volleyball dataset (Bagautdinov
et al. (2017)). 1 compares the Average Displacement Error in pixels. The MSE loss calculated
for the entire sequence by Keras is provided for reference.

To provide insight if rich visual features are beneficial for prediction of human motion the
individual LSTM is trained without visual features for comparison. One can obtain that using
visual features the average displacement error is already reduced by approximately 21%.

The focus of this work is on the choice which architecture is most beneficial for prediction using
the given features. Therefore the basic individual LSTM is compared with basic joint LSTM.
The joint LSTM is outperformed by the individual LSTM by almost 53 %. This is very likely a
consequence of the size of the dataset.

The deeper architectures beat the basic LSTM architectures by more than 63%.

The stacked LSTM with additional fully connected layers reaches an average displacement error
of 15.88 pixels. Given that predictions are performed in the image coordinates, one can only
approximate the accuracy in meters.

Table 1: Quantitative Results on the Volleyball Dataset (Bagautdinov et al. (2017))

Architecture MSE Loss
Average Displacement Error
(in pixels)

Stacked Deep LSTM 716.10 15.88
Stacked LSTM 761.02 16.23
Deep LSTM 1239.77 21.59
LSTM (no visual features) 13998.62 74.10
LSTM 6997.50 58.60
Joint LSTM 27620.14 101.79

7 Future Work

The following approaches could be used for further evaluation:





    

If a fixed amount of frames is used as an input time series and a fixed amount of frames is desired
as an output, one could even use a non-recurrent neural network. The LSTM layer is replaced
by another fully connected layer and the structure results in a Feedforward Neural Network.

Furthermore, the performance could be compared with the prediction of a Linear Kalman Filter
using spatial coordinates.

Poses generated from OpenPose can serve as additional rich visual feature in the future and
might improve accuracy.

Future work includes the collection of a data set in urban environments for the task of more
generic human activity forecasting.

8 Conclusion

This work reasons why spatial positions are not a sufficient representation for human trajectory
prediction. For certain scenarios additional rich visual features are obligatory. A variety of
neural network architectures are proposed and their performance is evaluated.

The use of additional visual features is helpful for the improvement of human-human interaction
modeling and consequently also beneficial for the success of human activity forecasting.

This evaluation based on the given volleyball dataset aims to be a proof of concept that rich
visual features increase the accuracy of prediction.

Although motion prediction in sports might be easier due to its clear rules and strategies,
previous work (Alahi et al. (2016), Yamaguchi et al. (2011)) has shown that unwritten rules and
movement strategies in traffic seem to exist and can be learned by LSTM networks. Therefore, it
is reasonable to assume that LSTM structures can learn this behavior using the additional visual
information about activity as it can perform such predictions in sports.

Pedestrian movement forecasting is one of the crucial modules for self-driving cars and au-
tonomous delivery platforms. The possibility to handle tasks as predicting the start of a move-
ment provides a new way of understanding traffic scenes and allows new means of acting in
scenarios for autonomous vehicles.
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