ETH zürich

Autonomy and the Future of Urban Mobility: **Beyond the Hype**

Claudio Ruch Representing Group Prof. Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT, ETH Zürich

STRC 2018, May 17th 2018.

Autonomous Driving in 1994

Why Self-driving Vehicles?

A financial perspective on personal mobility (CH Market)

- Safety:
 - "Cost of a statistical life": CHF 9M
 - Estimate based on 2010 ARE report and others:
 - Economic cost of road accidents: ~ CHF1'966M/year.
 - Societal harm of road accidents: ~ CHF 7'158M/year
- Cost of congestion:
 - BFE figures, ARE report 2010: ~ CHF1'565M/year
- Health costs of congestion:
 - Various reports, estimate: ~ CHF 2'097M/year
- Increased productivity/leisure:
 - Estimate ~ CHF 37'500 M/year
- Car sharing:
 - Assuming a "sharing factor" of 4, estimate CHF 24'400M/ year of benefits to individuals.
 - Other studies [Burns et al., '13, Fagnant, Kockelman '14] suggest higher sharing factors, up to ~10.

Autonomous Mobility-on-Demand (AMoD) in Context

The Technology Enabling Autonomous Vehicles

LogPlayer

0

20180412T163855_7e5b46c2.lom.00	P	ause	Step	•	1
0		0			
101.002 s	1.00 ×	Č.,			3379
Log channel		Playb	ack char	nnel	Enable
autobox.linmot.get	au	tobox.linn	not.get		
autobox.linmot.put	autobox.linmot.put				
autobox.misc.get	au	tobox.mis	c.get		P
autobox.misc.put		autobox.misc.put			
autobox.rimo.get	autobox.rimo.get				
autobox.rimo.put	autobox.rimo.put				
autobox.steer.get	obox.steer.get autobox.steer.get		B*		
utobox.steer.put autobox.steer.put		¥			
avis240c.overview.atg davis240c.overview.atg		P.			
davis240c.overview.dvs	da	vis240c.o	verview.d	vs	* ·
Toggle Select	ted		Channe	el Prefi	c

200

Je de la construction de la cons

Velocity 0.00[m*s^-1] TurningRate 0.00[s^-1]

The second and a second property of the

exp	8	25000	aps	record			
28.1 Hz {0.47[m {0.01[s]	24.91[*s^-2], -9 `-11, 0.01	degC] .54[m*s^-2], [s^-1], 0.00[-1.02[n	n*s^-2]}			
farente	-11	to all creet	11				
					8102	e i ee	
					1807		
					19		

save2png

20180307T165102_6e45300d.lcm.00	Play Step 📢	1 🕨
	0	,
153.564 s	0.00 ×	535245
Log channel	Playback channel	Enable
autobox.linmot.get	autobox.linmot.get	
autobox.linmot.put	autobox.linmot.put	×
autobox.misc.get	autobox.misc.get	×
autobox.misc.put	autobox.misc.put	
autobox.rimo.get	autobox.rimo.get	~
autobox.rimo.put	autobox.rimo.put	×
autobox.steer.get	autobox.steer.get	
autobox.steer.put	autobox.steer.put	×
davis240c.overview.atg	davis240c.overview.atg	×
davis240c.overview.dvs	davis240c.overview.dvs	¥
Toggle Selecte	d Channel Prefix:	

8	25000	aps record
0	23000	aps record

and the second design of the second s

Z1.3 TIZ

CO E LogPlayer

0

0

>___

-

-

Velocity 0.00[m*s^-1] TurningRate 0.00[s^-1]

	🥐 UR 🔮 😤				
		COB LCM Spy			
		Clear 0 B/s 200.	2 MB		
		Channel /	Туре	Num	
		autobox.linmot.get	BinaryBlob	28	
		autobox.linmot.put	BinaryBlob	5	
		autobox.misc.get	BinaryBlob	11	
		autobox.misc.put	BinaryBlob	5	
02		autobox.rimo.get	BinaryBlob	28	

	8102
	402
يه وارتد و	102400

Channel /	Туре	Num M	[Hz]	[1/Hz]	ms	[kB/s]	Un
tobox.linmot.get	BinaryBlob	28630	0.00	Infinity	-10.00	0.00	
tobox.linmot.put	BinaryBlob	5702	0.00	Infinity	-10.00	0.00	
tobox.misc.get	BinaryBlob	11454	0.00	Infinity	-10.00	0.00	
tobox.misc.put	BinaryBlob	5702	0.00	Infinity	-10.00	0.00	
tobox.rimo.get	BinaryBlob	28635	0.00	Infinity	-10.00	0.00	
tobox.rimo.put	BinaryBlob	5693	0.00	Infinity	-10.00	0.00	
tobox.steer.get	BinaryBlob	57274	0.00	Infinity	-10.00	0.00	
tobox.steer.put	BinaryBlob	5697	0.00	Infinity	-10.00	0.00	
avis240c.overview	BinaryBlob	114414	0.00	Infinity	-10.00	0.00	
avis240c.overview	BinaryBlob	63646	0.00	Infinity	-10.00	0.00	
kart.pose.lidar	BinaryBlob	5703	0.00	Infinity	-10.00	0.00	
kart.status.get	BinaryBlob	11351	0.00	Infinity	-10.00	0.00	
ystick.generic_xbo	BinaryBlob	5700	0.00	Infinity	-10.00	0.00	
o16.center.pos	BinaryBlob	15850	0.00	Infinity	-10.00	0.00	
ol6.center.ray	BinaryBlob	86298	0.00	Infinity	-10.00	0.00	

2

() () wed mai / 2010 0.52 Ph

SHEERING

ちちょう りょうり ひょうちょう ひょうちょう

MIT Team, DARPA UC, 2007

In-vehicle camera

The facts

The rules of the road are in fact not that many

- What can be driven, where, when
- Who can drive, where, when

- Accident prevention/ avoidance
- Direction of travel
- Speed limit

•However, the possible combinations of rules, and the way they are interpreted over different world instances, are exceedingly many

- Right of way
- Merging
- Signals (passive)
- Signals (active)
- Parking/stopping

 Hard to code good behaviors Hard to learn good behaviors Easy to recognize good behaviors

But: What if the rules are ambiguous?

The Achille's Heel for AVs

- The most fundamental problem in designing AVs is that we don't really know how (human-driven) vehicles should behave.
- Challenge for the AV R&D community: Develop a sound theory of the "rules of the road" for what are good vs. bad behaviors.

The Three Laws

A robot may not injure a human being or, through inaction, allow a human being to come to harm.

A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.

A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Product vs. Service

	AVs as a consumer product	AVs as a service (MaaS)
Scope Where and when the AV capabilities must function	Everywhere, all the time	Geo-, time-, weather-fenced operation
Financials Cost constraints	Comparable to the cost of the vehicle and/or driver's time.	Comparable to the cost of hiring driver
	PV of the driver's time: ~23,000 USD for a 10-year lifetime	> 100,000 USD per year
Infrastructure Maps, dealers, service	Global scale, immediately	Scale (sub)linearly with the user base
Servicing and Maintenance	Most high-tech sensors etc. not user serviceable yet	Servicing/maintenance crews already on roster.

Autonomous Mobility-on-Demand: The Fleet Perspective

AMoDeus API

Simulation - Tools

- ✓ Street-level detail.
- ✓ Agent-based.
- ✓ Extensive.
- \checkmark Effects such as dynamic demand, congestion etc. are taken into account.

SIMMOBILITY

- Hard to setup and calibrate.
- No AMoD specific performance metrics, adaptable visualizers.
- Limited AMoD support.

API

e.g., Pavone, Marco, et al. "Robotic load balancing for mobility-on-demand systems." The International Journal of **Robotics Research 31.7** (2012): 839-854.

✓ Sound theories and proven limits. \checkmark Insights thanks to analytical formulas.

- Simplified models do not represent reality accurately enough.
- Often results have not been tested on high-fidelity simulations.

What size should I chose my fleet for a given geographical area?

Theory: Minimum Fleet Sizing

- Customer origins distributed according to φ_O
- Customer destinations distributed according to φ_D
- Customers arriving at a rate λ
- Shortest tour connecting a set of requests: **Stacker Crane Tour** composed of and of $O \rightarrow D$ and $D \rightarrow O$ pieces.
- The average rate of additional distance that needs to be covered is: $\lambda \cdot (d_{O \to D} + d_{D \to O})$
- The collective fleet of N vehicles cruising at average speed \bar{v} needs to be able to cover at least the additional distance arriving with new requests:

$$N \cdot \bar{v} \ge \lambda \cdot (\bar{d}_{O \to D} + \bar{d}_{D \to O})$$

Theory: Minimum Fleet Sizing

• For a large number of requests the following properties hold:

•
$$\bar{d}_{O \to D} \approx \mathbb{E}_{\varphi_O, \varphi_D} ||X - Y||$$

•
$$\bar{d}_{D\to O} \approx EMD(\varphi_O, \varphi_D)$$

- EMD is the **Earth Mover's Distance**, a simple statistical quantity that can be obtained by solving a linear program.
- Knowing the rate of arrival of the requests λ , vand the distribution of request origins φ_O and the distribution of request destinations φ_D we can very easily compute the number of needed vehicles:

$$N > \frac{\lambda}{\bar{v}} \cdot (\mathbb{E}_{\varphi_O,\varphi_D} ||X - Y|| + EMD(\varphi_C))$$

Simulation: Minimum Fleet Sizing

Requests Served at End of Day

Simulation: Minimum Fleet Sizing

5 vehicles

40 vehicles

250 vehicles

Brief Introduction to the Autonomous Mobility-on-Demand Decision Space

Dispatching

Intelligent Dispatching

Intelligent Dispatching and Rebalancing

Preview: Performance Gains of Coordination

- Taxi Dataset:
 - 536 Taxis in San Francisco
 - May 17th to June 10th 2008
 - Totally 464,045 requests.
- Waiting times of coordinated fleet likely smaller than waiting times of taxi fleet.

• upper bound of waiting times in taxi dataset

Preview: Efficiency Gains of Coordination

- Taxi Dataset:
 - 536 Taxis in San Francisco
 - Totally 464,045 requests.
 - May 17th to June 10th 2008

• Empty distance of

coordinated fleet surely smaller than best case fleet distance of taxi fleet.

Empty Distance [km]

Coordinated control of fleets leading to **considerable gains in** service level and efficiency compared to exsting MoD schemes.

lower bound on empty distance in taxi dataset

Preview: AMoD as a Form of Public Transportation in Cases of Low Utilization?

Some train lines in Switzerland are financed less than 25% from ticket revenues..

Train lines are not closed as population sees bus replacements as an inferior alternative.

Preliminary Results: Waiting Times at 40 Vehicles

Preliminary unverified results (currently ongoing research)

Binned Waiting Times

- 10% quantile - 50% quantile - 95% quantile Mean

Conclusions

- 1. The main benefit of autonomous driving in terms of economic value is that it allows sharing of cars and thus enables one-way shared mobility on a large scale.
- 2. The **technology** enabling autonomous driving favours its application in a service scope.
- 3. **Optimization** of AMoD fleet operations using dispatching and rebalancing algorithms results in significant improvements of operational efficiency and service level.

Thank you very much for your attention.