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Abstract

In this paper, we aim at bringing the predictive strength of Neural Networks, a powerful machine
learning-based technique, to the field of Discrete Choice Models (DCM) without compromising
interpretability of these choice models. We start by matching the mathematical derivation of
the multinomial logit model (MNL) to its neural network equivalent. This allows us to write
DCM problems in modern machine learning libraries and opens the way for our novel hybrid
approach: we suggest to add a term arising from a dense neural network (DNN) in the utility
function. This added value is obtained by using all discarded features from the original DCM
model as input to the DNN. Not only does this greatly increases the predictive strength of the
model, but it also keeps the strong parameters significance used in the original MNL. Lastly, we
have reasons to believe this term fits very well in DCM theory when relating it to the random
utility term ε, capturing all unknown or unused features of the model which may appear in the
thinking process of an individual.
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1 Introduction

Deep learning has been revisiting many fields for the past few years such as signal processing,
computer vision, finance and many more (LeCun et al., 2015). Its ability to learn a non-linear
mapping function from observed data to a desired output is second to none. However, in many
fields, it comes with the drawback of being a black-box. When studying demand in travel
applications, health care programs or market produce for example, it is of utmost importance
we understand what are the key parameters in the decision-making process of the clients. This
is why researchers have been using Discrete Choice Modeling (DCM), as they are specifically
designed to capture in detail the underlying behavioral mechanisms at the foundation of this
decision-making process (Ben-Akiva and Lerman, 1985).

Recently, researchers have started to study how to bridge the gap between Discrete Choice
Modeling (DCM) and Machine Learning (ML) frameworks (Acuna-Agost et al., 2017, Hage-
nauer and Helbich, 2017, Iranitalab and Khattak, 2017, Paredes et al., 2017, Brathwaite et al.,

2017). There are recent attempts to combine them (Otsuka and Osogami, 2016, Yang et al.,

2017). However, DCM remains the most commonly used method due to the interpretability of its
parameters. Hence, in this paper, we propose to enhance discrete choice modeling, using a neural
network while keeping interpretability of the results. The method consists in adding an extra
term in the utility function of a logit model estimated by a dense neural network (DNN) during
the minimization of the negative log likelihood. The input to the DNN must be complimentary
to that of the utility function. The goal is to keep the key parameters of interest in the DCM
framework for behavioral interpretation and to use the remaining ones in order to improve
predictability.
To evaluate our method, we use the openly available data, Swissmetro, and a Multinomial Logit
(MNL) model described by Bierlaire et al. (2001). We then compare it with our new method and
show a 15% increase in the final log-likelihood while keeping significance and interpretability
of the important MNL parameters. Finally, we suggest an intuitive explanation on how this new
term may be integrated within the DCM framework.

2 Method

In this section we present our new approach using a multinomial logit model. However the
methodology is general and can be applied to more advanced logit models.





       

2.1 Multinomial Logit as a Neural Network

In discrete choice modeling, a commonly used model is the multinomial logit (McFadden et al.,

1973). Given an individual n and a set of d variables Xn = {x1n, ..., xdn}, we define a choice set
Cn of I alternatives and matching utility functions:

Uin = β1 · x1in + ... + βd · xdin + εin ∀i ∈ Cn (1)

= Vin + εin (2)

where ε1n, ..., εpn are i.i.d Extreme Value distributed and β1, .., βd is a set of parameters to be
estimated by minimizing the negative log-likelihood:

L = −

N∑
n=1

∑
i∈Cn

yin log [P(i|Cn)] (3)

with yin equal to 1 if individual n chooses i and 0 otherwise. The probability of choosing i ∈ Cn

for multinomial logit is defined as:

P(i|Cn) = P(Uin > max
j

(U jn)) =
expVin∑

j∈Cn

expV jn
(4)

This mathematical model has deep theoretical foundations (Ben-Akiva and Lerman, 1985)
making extensive use of ε to define statistical properties. However, when minimizing equation
(3), we can relate this act to training an artificial neural network in machine learning (LeCun
et al., 2015).
Indeed, if we define β = {β1, ...βd} as a kernel of size (1 × d) and a single set of variables Xn

as an image of size (I × d), we get the observables of the utility functions Vn = {V1n, ...VIn} by
doing a convolution1 between the kernel and the image, as seen on the right side of figure (1).
The probabilities can be obtained by using a softmax activation function (Bishop, 1995) defined
as:

(σ(Vn))i =
expVin∑

j∈Cn

expV jn
(5)

which can be identified as equation (4) for all probabilities. For the loss function, we use
categorical cross-entropy Shannon (1948) written:

Hn(σ, yn) = −
∑
i∈Cn

yin log [σ(Vn))i] (6)

1may be defined as a correlation depending on the kernel orientation or coding library used





       

which is the same as equation (3) when summed over all individuals. This method allows us to
use conventional deep learning libraries to implement the multinomial logit model, giving us
very high flexibility and efficiency in modifying the structure and in learning the parameters.

2.2 Enhanced Utility Functions

In this section, we take advantage of the neural network approach to add a value, uin, to the
corresponding utility function Uin for all i ∈ Cn and un = {u1n, ..., upn} such that:

un = ψ(Q) (7)

where Q is the ensemble of inputed features and ψ : RI×d 7→ RI is the function defined by
multiple neural network dense layers and their corresponding activation functions, such that the
utility functions can be written as:

Un = βXT + un + εn (8)

2.2.1 Same Input

If we define Q = X, where X is the inputed features of MNL, un can be interpreted as the best hy-
perparameter for each alternative i ∈ C which maximizes the model’s likelihood. Unfortunately,
in this case, the neural network layers also overrun the simple linearity of MNL parameters in
the utility functions making all betas insignificant. To avoid this problem, we need to select
features for the neural network which aren’t the same, or highly correlated, with the original
MNL input.

2.2.2 Extra Input

To avoid that the new term overruns the DCM parameters, we define Q = U, whereU is all the
unused features in X and contain distinct information. Such a setting may greatly increase the
likelihood while keeping the original parameters highly significant.
The final model, combining both the convolution approach of writing MNL and the added neural
network term from unused DCM features can be seen in figure (1).





       

Figure 1: With DCM written in modern machine learning libraries, one can flexibly change the
model, optimizers in training and more. On the right-hand side, the weights of the
kernel correspond to the β j parameters, and applying a convolution layer to the input
features gives us the same utility functions as in MNL. The left hand side is the DNN
component, producing a single term for each utility function and highly increasing
predictive accuracy.

2.3 Dataset and Modelling

To present our new method, we follow the multinomial logit model from Bierlaire et al. (2001)
on the openly available Swissmetro dataset. It is based on a stated preference survey on transport
modes, gathering 10’700 entries from 1’190 different participants. Each individual informed
of his choice in transportation for various trips including the car, the train or an innovative
project: the Swissmetro. The Swissmetro is the name given to an attempt to build a very fast
underground transport mode to connect the biggest cities in Switzerland.
Unfortunately, the original dataset used in Bierlaire et al. (2001) is not the same as the one
currently available, which will give some differences in the parameters found in the benchmark
MNL model. The utility functions are defined in table (1) as done previously by Bierlaire et al.
using the same variable descriptions.

Moreover, as seen in 2.2, we will take all unused features from our survey as input for the neural
network component of the enhanced method. There are a total of 8 extra features which are as
follows:





       

Table 1: Utility functions

Variable Alternative
Car Train Swissmetro

ASC Constant Car-Const SM-Const
TT Travel Time B-Time B-Time B-Time
Cost Travel Cost B-Cost B-Cost B-Cost
Freq Frequency B-Freq B-Freq
GA Annual Pass B-GA B-GA
Age Age in classes B-Age
Luggage Pieces of luggage B-Luggage
Seats Airline seating B-Seats

- Travel purpose: Discrete value between 1 to 9 (Business, leisure, travel,... )
- First class: 0 for no or 1 for yes if passenger is a first class traveler in public transport
- Ticket: Discrete value between 0 to 10 for the ticket type (One-way, half-day, ...)
- Who: Discrete value between 0 to 3 for who pays the travel (self, employer, ...)
- Male: Traveler’s gender, 0 for female and 1 for male
- Income: Discrete value between 0 to 4 concerning the traveler’s income per year
- Origin: Discrete value defining the canton in which the travel begins
- Dest: Discrete value defining the canton in which the travel ends

3 Results

3.1 Multinomial Logit as Benchmark

We start by running our model on simple Multinomial Logit as a benchmark. As we can see in
table (2), the original model defined by Bierlaire et al. (2001) no longer holds the same values
when applied to the new dataset, but the utility functions are still well defined with all significant
parameters.





       

Table 2: MNL parameter values
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 AS CCar 1.20 0.183 6.58 0.00
2 AS CS M 1.19 0.182 6.53 0.00
3 βage 0.175 0.0512 3.41 0.00
4 βcost -0.00690 0.000577 -11.97 0.00
5 β f req -0.00704 0.00116 -6.09 0.00
6 βGA 1.54 0.168 9.17 0.00
7 βluggage -0.113 0.0479 -2.36 0.02
8 βseats 0.432 0.115 3.76 0.00
9 βtime -0.0129 0.000842 -15.34 0.00

Number of observations = 7234
L(β̂) = −5766.705

3.2 Improvements with enhanced method

A common difficulty in modeling utility functions is adding statistically significant features.
However, when successful, this translates into the strength of DCM, giving insight on the
importance of chosen parameters in the decision making process. In the following results,
we release some of this informative power by allowing the machine to find the best possible
hyperparameters for each single utility function.

To first maximize the model’s likelihood, we implement the multinomial logit model in a deep
learning library (Abadi et al., 2015, Chollet et al., 2015) as seen in section (2.1) by adding the
term defined in equation (7). Statistical properties of the parameters are obtained thanks to
Biogeme (Bierlaire, 2009). Since the new term is a MNL feature, we redefine equation (8) as
Un = β̃X̃T + εn where un is added to X as a variable and has now its own parameter βNN added
to β. The results of these steps can be found in table (3).

As we can see, the log-likelihood ratio test is very high, reaching up to 1515.6 with only one
added parameter. However, this parameter holds all unused features, which is a total of 8, and
goes through a neural net with about 250 trained variables. So one could argue to use a X2

value with much higher degrees of freedom to accept the log-likelihood ratio test as significant.





       

Table 3: Hybrid Model parameter values
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 AS CCar 0.0652 0.179 0.37 0.71
2 AS CS M. 0.327 0.171 1.92 0.06
3 βage 0.376 0.0464 8.12 0.00
4 βcost -0.0141 0.000595 -23.63 0.00
5 β f req -0.00807 0.00123 -6.55 0.00
6 βGA 0.130 0.181 0.72 0.47
7 βluggage 0.0153 0.0505 0.30 0.76
8 βseats 0.207 0.106 1.95 0.05
9 βtime -0.0157 0.000952 -16.53 0.00

10 βNN 1.24 0.0524 23.74 0.00

Number of observations = 7234
L(β̂) = −5008.996

Fortunately, even with a thousand degrees of freedom, our value is above X2,0.001
1000 = 1143.9 and

the model can be accepted with confidence higher than 99.999%

Concerning the parameters, we see that some have lost their significance. This problem may
arise when the neural network component has learned highly correlated information to these
linear parameters. The non linear strength of this new term can overrun parts of the original
MNL description. For example, the amount of luggage taken may be correlated to the travel
purpose such as going on holidays. Or having an annual pass may be obvious in many conditions,
when combining the origin, destination and purpose of travel. In the following, we show how we
can select which parameters are most important for interpretation and yield even better results
with the neural network enhancing method.

3.3 Model Redefinition

In Bierlaire et al. (2001), two important values which are used to compare multiple models are
Value of Time (VOT) and Value of Frequency (VOF). In many DCM problems, we aim to find the
most accurate model possible, with many significant parameters, such that the post-estimation
indicators make sense. Indeed, a model which is too simplified will perform poorly not only for





       

prediction but also when trying to understand the human decision process and forecasting how it
will change when the settings are different, such as a rise in market price or increase in transport
times. Therefore, keeping an eye on important values across different methods allows us too
validate or not the chosen features.

If we consider our MNL model so far, the most interesting parameters in forecasting are most
likely cost, time and frequency. All other parameters are mostly here to get good values on the
important features as explained above. However, with the hybrid model, we can simply let the
dense neural network select which parameters and non-linear combinations are interesting with
unused features and allow us to concentrate on the inputs we want to interpret. This is what we
have done in table (4) where only a few desired features are kept, and all others are sent to the
DNN component of our model as extra features. As we can see, the values found are closer to
our previous models, closer than if we hadn’t used the hybrid model as seen in table (5), which
is what we mentioned above as being oversimplified.

Table 4: Hybrid model containing only values of greater interest
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 AS CCar 0.966 0.0977 9.89 0.00
2 AS CS M 1.13 0.0941 11.97 0.00
3 βcost -0.0165 0.000666 -24.71 0.00
4 β f req -0.00820 0.00129 -6.38 0.00
5 βtime -0.0171 0.000853 -20.05 0.00
6 βNN 1.25 0.0854 14.65 0.00

Number of observations = 7234
L(β̂) = −4894.539

3.4 Results summary

In table (6), we compare the VOT and VOF between our hybrid models and the MNL bench-
marks. As we can see, both hybrid methods give values close to each other, and as for the small
MNL, it is closer to the benchmark. However, as mentioned above, utility functions with low
dimensionality may not give the best minimum for its parameters.





       

Table 5: MNL containing only values of greater interest
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 AS CCar 0.533 0.0883 6.04 0.00
2 AS CS M 0.753 0.0889 8.47 0.00
3 βcost -0.00840 0.000596 -14.09 0.00
4 β f req -0.00704 0.00116 -6.09 0.00
5 βtime -0.0124 0.000827 -14.95 0.00

Number of observations = 7234
L(β̂) = −5862.549

When it comes to interpretation, we stay in the same order of magnitude and the same sign in
every situation.

Table 6: Parameter ratio comparison
Parameter MNL Hybrid Simple Hybrid Simple MNL

βcost 100.0% 204.3% 239.1% 121.7%
β f req 100.0% 114.6% 116.5% 100.0%
βtime 100.0% 121.7% 132.5% 96.1%

Value of Time 0.54 0.89 0.96 0.68
Value of Frequency 0.98 1.75 2.01 1.19

Final Log-Likelihood -5766.71 -5009.00 -4894.54 -5862.55
Number or parameters 9 10 6 5

4 Discussion

4.1 Analysis

As we have seen, enhancing a MNL model with a neural network needs a strategic choice in
parameters. Indeed, the predictive strength of the dense layers component may easily overrun
the original linear parameters due to redundant information read through the data. As such, it





       

is important to keep the features of greatest interest for the MNL component, and then give an
independent set of unused features to the NN part. By doing so, we were able to increase the
final log-likelihood by at least 15% compared to the benchmark. Moreover, the t-statistics of the
betas are still significant.

It is important to note, that the dataset if fairly optimized for DCM as we have few and discrete
features. We believe this method may perform much better with bigger datasets, since neural
networks are, by nature, data-driven approaches.

4.2 Intuitive Interpretation

When we make use of modern supervised machine learning, we are letting a deep network
finding the best mapping it can, given a set of features and labels. If we have a good architecture,
it will excel at predicting the correct answer of new data. However, getting to know what exactly
the network learned is a field of research in itself.
In our case, by using all unused features, we are providing as much information as we can to the
neural network. In this sense, the new term uin in our utility function can be seen as an estimation
of all uncaptured information in the decision making process of an individual. This description
resembles closely to the random utility term εin which is the randomness of our model, arising
from the fact that we cannot take into account all the information which goes into the decision
making of each individual. So in a way, uin = ε̄in, where ε̄in is an estimation of εin given the data
at hand. Since a survey may never acquire all the necessary information every single individual
will use for making a decision, and since deep neural networks are powerful with manipulating
data, but far from flawless, we may define the random utility term ε∗in such that:

εin = ε̄in + ε∗in (9)

⇔ Uin = Vin + ε̄in + ε∗in (10)

where ε∗in captures the randomness in the decision making, unforeseen by the gathered data itself
as well as the imperfect prediction of the neural network.
With this interpretation, we defend the idea that the new beta parameters find a better value as
they don’t compensate for lacking information.





       

5 Conclusion

We have suggested a new method combining both statistics and intuition from the field of
discrete choice modeling with the predictive strength of modern machine learning. This is
achieved by adding a single term, originating from a fully connected neural network, in each
utility function of a MNL model. The input of the network component must be unused features
and independent from the DCM framework. This method allows for a great increase in the final
log-likelihood while keeping parameters interpretable. We suggest that they actually converge to
a better value, which cannot be obtained through simple models. Moreover, we open the way for
an interpretation of this added term in the utility function, which is an estimator for uncaptured
decision-making information. Future research would be to verify the mathematical foundations
of this proposed theory. This method would also be much more efficient when applied to a larger
dataset. This hybrid model could bring intuition and statistics to neural network problems or
higher efficiency to cases solved with DCM framework.
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