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Işık İlber Sırmatel
Urban Transport Systems Laboratory
Swiss Federal Institute of Technology in
Lausanne
GC C2 385, Station 18, 1015 Lausanne
phone: +41-21-693 24 84
fax: +41-21-693 50 60
isik.sirmatel@epfl.ch

Nikolas Geroliminis
Urban Transport Systems Laboratory
Swiss Federal Institute of Technology in
Lausanne
GC C2 389, Station 18, 1015 Lausanne
phone: +41-21-693 24 81
fax: +41-21-693 50 60
nikolas.geroliminis@epfl.ch

May 2018

Abstract

Bus transport systems cannot retain headways without feedback control due to their unstable
nature, leading to irregularities such as bus bunching, and ultimately to increased travel times
and decreased bus service quality. Development of feedback control methods for bus transport
systems to avoid bus bunching and improve performance are thus of high importance. In this
paper we propose a hybrid model predictive control (MPC) scheme that can regularize spacings
and improve bus service quality. Performance of the predictive controller is compared with I-
and PI-controllers via simulations. Results indicate the potential of the hybrid MPC in avoiding
bus bunching, regularizing spacings and headways, and decreasing total service times.

Keywords
Public transport systems, bus speed control, bus bunching, hybrid systems, model predictive
control.





        

1 Introduction

It is well known in the public transport systems literature that bus systems cannot maintain
schedule without control (Newell and Potts, 1964). Buses that lag behind encounter more
passengers waiting for them, leading to them lagging more, and buses that are slightly fast
encounter less passengers. This positive feedback loop leads to the well-known phenomenon
of bus bunching. Instabilities in the bus transport system (BTS) operation, resulting from
spatiotemporal variability of both traffic congestion and stop-to-stop passenger demands, and
manifesting themselves as headway irregularity and ultimately as bus bunching, lead to inefficient
operations, increased service times, and degradation of service quality. Due to these reasons,
research on designing feedback control systems for BTSs is of high importance.

Considerable research has been directed, especially in the last 4 decades, to developing real-time
bus control methods for avoiding bus bunching and ensuring efficient and reliable operation of
BTSs (see Ibarra-Rojas et al. (2015) and Sánchez-Martínez et al. (2016) for detailed reviews,
and Berrebi et al. (2017) for an extensive review focusing on holding methods).

Most of the literature on bus operations via real-time control focus on station control methods,
which involve taking decisions at a subset of stops of the bus loop. Some methods of this
class focus on regularizing headways via holding, with the assumption that this would lead to
efficient operation and decreased travel times (Abkowitz and Lepofsky, 1990, Daganzo, 2009,

Xuan et al., 2011, Andres and Nair, 2017). In situations where there is high variability in the
demands, passenger waiting times need to taken into account in the holding problem formulation
alongside headways (Ibarra-Rojas et al., 2015). A recent study by Berrebi et al. (2015) considers
stochasticity in bus arrival times and derives an optimal holding policy for minimizing headway
irregularity by assuming that the distribution of bus arrivals is known and not influenced by
decisions further upstream. Holding can also be used to improve timing of passenger transfers
(Hall et al., 2001, Delgado et al., 2013). Another subclass of station control methods is the
stop-skipping strategies, where the control decisions are realized by forcing buses to skip some
stops, to increase speed and thus efficiency (Fu et al., 2003). Although station control strategies
can be effective in regularizing headways in moderate demand situations, for high demands they
have adverse affects on BTS performance as they actuate via holding the bus at a stop or making
the bus skip a stop. Under some circumstances they can make buses significantly slower, which
will influence the quality of in-vehicle service, but also increase the operating cost and required
fleet size. Another disadvantage of station control methods is that decisions can be taken only at
stops, resulting in a significant time lag between observations and control actions. This can play
a vital role if the system experiences various uncertainties both in time and space, which is the





        

case en route (congestion heterogeneity) and at stops (passenger demand heterogeneity).

Another direction for control of public transport operations is the bus speed control, which
involves manipulating the speed of each bus in real-time during its movement via feedback
control mechanisms to avoid bunching and increase BTS efficiency. On this direction, a control
strategy combining bus speed control and signal priority is developed in Chandrasekar et al.

(2002), where control actions are taken to ensure that the buses operate with spacings equal to a
desired spacing, which is shown to be able to regularize headways. A bus speed control method
is proposed by Daganzo and Pilachowski (2011), where the speed command for each bus is
computed according to its forward and backward spacings, which can enforce speed bounds
and prevent bus bunching. A more recent study by Ampountolas and Kring (2015) develops
a combined state estimation and linear quadratic regulator scheme to achieve coordination
between the buses, leading to headway regularity and improved service.

The following points are crucial for real-time control of bus operations: (a) Constraints on speeds
and passenger capacities of buses, (b) hybrid/mixed logical dynamical (MLD) phenomena (e.g.,
a bus can either cruise or stop while passengers can transfer only if a bus is stopping at the
stop), (c) possibility of access to demand and traffic information without perfect knowledge.
Considering these points, model predictive control (MPC) emerges as a control design paradigm
highly applicable to control of bus operations. Based on real-time repeated optimization,
MPC is an advanced control technique suited to optimal control of constrained multivariable
nonlinear systems (note that MPC is also known as receding horizon control and rolling horizon
planning/control). Main features of MPC are discussed in Garcia et al. (1989), whereas Mayne
et al. (2000) provides an overview of theoretical aspects. A framework for hybrid MPC design
is proposed in Bemporad and Morari (1999).

Motivated by the aforementioned points, in this paper we propose a hybrid MPC scheme
considering a simplified MLD model with actuation via bus speeds, based on a mixed integer
quadratic programming (MIQP) formulation to regularize bus spacings and obtain fast BTS
operation. The method addresses the slowing-down problem of spacings-based bus speed
control literature by integrating bus speed maximization in the problem formulation. Moreover,
the proposed MIQP formulation yields convex quadratic programming (QP) subproblems (by
construction due to the MLD modeling approach) when the integrality constraints are dropped.
Such MIQPs, although still non-convex and NP-hard, can be solved much more efficiently
compared to the more general integer/mixed integer NLPs with non-convex subproblems, since
there exists powerful algorithms for solving the convex QP subproblems (Bonami et al., 2012).
Thus, the aforementioned feature of the proposed approach enables solutions of the hybrid MPC
problems to global optimality while retaining real-time tractability.





        

2 Control Design

Achieving schedule reliability is an important goal in BTS control. This corresponds to mini-
mizing the standard deviation of headways, as headways are directly related with waiting times.
Nevertheless, headways are cumbersome to be integrated into a control framework. Regularizing
bus spacings can be used as a proxy for achieving regular headways, as an ideal BTS condition
where speeds and spacings of all buses are equal corresponds to perfect headway regularity. Still,
under fast evolving conditions, this might not be the case. Although describing the evolution
of headways is straightforward from a modeling point of view, the nonlinearity makes the
integration in a control framework difficult. We consider this as a future direction of research.

In the following subsections we first describe in detail the main contribution of the paper: A
novel hybrid MPC scheme that optimizes future BTS trajectories over bus speeds by solving an
MIQP in real-time considering a weighted sum of two terms related to spacing regularization
and fast BTS operation as objective function. We also present in a later subsection two bus speed
controllers for comparison purposes: (i) An integral controller that reacts to spacing errors that
is conceptually similar to the spacings-based controller proposed by Daganzo and Pilachowski
(2011), (ii) a proportional-integral controller that reacts to both the spacing error and its rate of
change, specifying a straightforward improvement over the integral controller.

2.1 Hybrid Model Predictive Control

We propose here a hybrid MPC with bus speed actuation considering BTS dynamics involving
interactions between bus motion and passenger transfers between buses and stops, considering
a BTS with Kb buses and Ks stops. The prediction model of the hybrid MPC includes all Kb

buses operating on the loop but only K̃s(t) active stops (a subset of all stops, totaling Ks) that are
upcoming stops for the buses, with 1 ≤ K̃s(t) ≤ Kb. In general, the number of active stops K̃s(t)
is time-varying, as it is possible that there are two buses cruising to the same stop at the same
time, in which case K̃s(t) would be smaller than Kb. Nevertheless, in normal conditions with
well maintained spacings (such as those reported in the simulation results), and for a realistic
BTS where the number of stops is larger than the number of buses, K̃s(t) is always equal to Kb.
In an extreme (catastrophic) case in which all buses are cruising to the same stop then K̃s(t)
would be 1. Such a model expresses a simplified model of the full BTS dynamics: The finite
time horizon is expressed through the prediction horizon N, whereas the finite horizon in space
is realized by considering only the first upcoming stop for each bus and omitting the rest.





        

2.1.1 Dynamics of Continuous States

(a) Predicted bus position dynamics can be written as:

xi(k + 1) = xi(k) + T · zi(k) (1)

where k is the prediction time step counter, whereas xi(k) ∈ R and zi(k) ∈ R are the predicted
position and active speed of bus i, respectively.

(b) Dynamics of predicted bus accumulation states ni(k) (total accumulation on bus i) and ni,a(k)
(the part of ni(k) with destination stop a) can be written as follows (analogous to equation
(??)):

ni(k + 1) = ni(k) + T ·
(
qin

i (k) − qout
i (k)

)
(2)

ni,a(k + 1) = ni,a(k) − Tqout
i (k),

where qin
i (k) ∈ R and qout

i (k) ∈ R are the predicted boarding and alighting passenger flows,
respectively, transferring between stop a and bus i.

(c) Dynamics of the predicted stop accumulation state ma(k) can be written as follows:

ma(k + 1) = ma(k) + T ·

βa(k, tc) −
Ia∑
i=1

qin
i (k)

 , (3)

where βa(k, tc) ∈ R is the passenger flow demand accumulating at stop a estimated at tc, whereas
Ia is the set of buses sharing stop a as their first upcoming stop.

2.1.2 Constraints Defining Binary Events

(a) The event ex
i (k) ∈ B expresses whether bus i has reached stop a or not, and is defined as:

ex
i (k) =

1 if 0 ≤ xi(k)

0 otherwise.
(4)





        

(b) The event em
i (k) ∈ B describes whether there are any passengers at stop a or not:

em
i (k) =

1 if ma(k) ≤ 0

0 otherwise.
(5)

(c) The event ec
i (k) ∈ B expresses whether bus i has available space for passengers or not:

ec
i (k) =

1 if ni,max − ni(k) ≤ 0

0 otherwise.
(6)

(d) The event en
i (k) ∈ B describes whether there are passengers on bus i that want to alight at

stop a or not:

en
i (k) =

1 if ni,a(k) ≤ 0

0 otherwise.
(7)

2.1.3 Dynamics of Binary States

(a) Predicted cruising state γi(k) ∈ B expresses whether bus i is cruising to stop a or not, and
evolves according to following dynamics:

γi(k + 1) = γi(k) ∧ ¬ex
i (k). (8)

(b) The predicted stopping state dynamics can be written as:

δi(k + 1) = λi(k) ∨ θi(k), (9)

where δi(k) ∈ B is the stopping state which expresses whether bus i is stopping at its upcoming
stop a (δi(k) = 1) or not (δi(k) = 0), λi(k) ∈ B is the logical condition stating whether bus i

begins stopping at stop a (λi(k) = 1) or not (λi(k) = 0), whereas θi(k) ∈ B is the logical condition
stating whether bus i continues stopping at stop a (θi(k) = 1) or not (θi(k) = 0). The predicted
begin stopping condition λi(k) is defined as:

λi(k) , γi(k) ∧ ex
i (k) (10)





        

which can be physically described as follows: Bus i begins stopping at stop a if it is cruising
to stop a (i.e., if γi(k) = 1) and it reaches stop a (i.e., if ex

i (k) = 1). Furthermore, the predicted
continue stopping condition θi(k) is defined as:

θi(k) , δi(k) ∧ ¬
(
(em

i (k) ∨ ec
i (k)) ∧ en

i (k)
)

(11)

which can be physically described as follows: Bus i continues stopping at stop a if it is stopping
(i.e., if δi(k) = 1), and there are passengers wanting to alight (i.e., if en

i (k) = 0), or there are
passengers wanting to board (i.e., if em

i (k) = 0) and the bus has vacant places (i.e., if ec
i (k) = 0).

Thus, equation (9) states that bus i begins stopping at stop a if the conditions for it to begin
stopping are satisfied (i.e., λi(k) = 1), and it continues stopping at stop a as long as the conditions
for its stopping remain satisfied (i.e., θi(k) = 1). Once these former conditions are not satisfied
anymore, stopping state of bus i becomes inactive (i.e., δi(k) = 0) and it is thus allowed to move
(representing its beginning to cruise to the stop after stop a) but it does not transition to a further
cruising state since the stops other than the upcoming stop are not included in the prediction
model.

2.1.4 Constraints on Bus Speed Control Inputs

The active speed of bus zi(k) is defined as:

zi(k) =

ui(k) if δi(k) = 0

0 otherwise,
(12)

expressing the condition that bus i is restricted to have zero speed when it is stopping (i.e., when
δi(k) = 1), where ui(k) is the bus speed control input for bus i, which is bounded by the minimum
and maximum speeds:

vmin ≤ ui(k) ≤ va,max(k, tc), (13)

where va,max(k, tc) is the maximum bus speed that depends on the traffic conditions at the link
ending at stop a, and is thus to be estimated at each control time step tc.





        

2.1.5 Constraints on Passenger Flows

(a) The predicted boarding passenger flow qin
i (k) ∈ R transferring from stop a to bus i is defined

through the following constraints:

qin
i (k) ≤ α · δi(k)

T · qin
i (k) ≤ ni,max − ni(k) (14)

T · qin
i (k) ≤ ma(k).

(b) The predicted alighting passenger flow qout
i (k) ∈ R transferring from bus i to stop a is defined

through the following constraints:

qout
i (k) ≤ α · δi(k) (15)

T · qout
i (k) ≤ ni(k).

2.1.6 Initial States

Initial bus position state is defined as:

xi(1) = −di,a(tc) (16)

where di,a(tc) ∈ R is the distance of bus i to stop a measured at time tc, whereas initial cruising
state is:

γi(1) = γ̃i,a(tc), (17)

where γ̃i,a(tc) is the cruising state of bus i measured at tc, and initial stopping state is

δi(1) = δ̃i,a(tc), (18)

where δ̃i,a(tc) is the stopping state of bus i measured at tc, and initial stop accumulation state is

ma(1) =

Ks∑
j=1

m̃a, j(tc), (19)





        

where
∑Ks

j=1 m̃a, j(tc) is the total passenger accumulation at stop a measured at tc, whereas initial
bus accumulation states are

ni(1) =

Ks∑
j=1

ñi, j(tc) (20)

ni,a(1) = ñi,a(tc),

where
∑Ks

j=1 ñi, j(tc) and ñi,a(tc) are the total passenger accumulation and the part destined to a

inside bus i at measured tc, respectively.

2.1.7 Hybrid Model Predictive Control Problem

We formulate the problem of finding the bus speed control input values that minimize a weighted
sum of two terms related to spacing regularization and fast BTS operation as the following
hybrid MPC problem:

minimize
ui(k)

Kb∑
i=1

N∑
k=1

(
e2

i (k + 1) + σ · y2
i (k)

)
(21)

subject to for i = 1, . . . , Kb :

initial states (17), (18), (19), (20)

for k = 1, . . . , N :

0 ≤ qin
i (k)

0 ≤ qout
i (k)

dynamics (1), (8), (9), (3), (2)

constraints (12), (13), (14), (15)

events (4), (5), (6), (7)

where N is the prediction horizon, σ is the weight on fast operation term, whereas ei(k) and yi(k)
are the predicted spacing and speed errors for bus i, respectively, and defined as follows:

ei(k) = xi, f (k) − 2xi(k) + xi,r(k) (22)

yi(k) = va,max(k, tc) − zi(k),

where xi, f (k) and xi,r(k) are the predicted positions of the buses in front of and behind bus i,
respectively. The problem (21) is an MIQP, which, although being a non-convex problem, can
be solved efficiently (as it yields convex QPs when the integrality constraints are dropped) via
software packages developed for mixed-integer programs.





        

2.2 Integral and Proportional-Integral Controllers

We first define front and rear spacings as follows:

si, f (t) = xi, f (t) − xi(t) (23)

si,r(t) = xi(t) − xi,r(t) (24)

where xi, f (t) ∈ R and xi,r(t) ∈ R are the positions of the buses in front of and behind bus i,
whereas si, f (t) ∈ R and si,r(t) ∈ R are the front and rear spacings, respectively, with which we
can define the spacing error ei(t) ∈ R of bus i as follows:

ei(t) = si, f (t) − si,r(t). (25)

A discrete-time integral (I) controller with the goal of operating the BTS such that ei(t) = 0 ∀i ∈

Kb can be formulated as follows:

ui(t) = ui(t − 1) + KI · ei(t), (26)

where ui(t) ∈ R is the control input (bus speed command) for bus i and KI ∈ R is the integral gain.
The I-controller simply updates the control input as a function of its spacing error ei(t), and how
strongly it reacts to errors can be tuned by changing the KI parameter. Note that the I-controller
is conceptually similar to the bus speed controller proposed in Daganzo and Pilachowski (2011),
in the sense that both controllers update bus speeds proportional to the spacing errors.

A straightforward improvement over the I-controller is the discrete-time proportional-integral
(PI) controller that can be formulated as follows:

ui(t) = ui(t − 1) + KP · (ei(t) − ei(t − 1)) + KI · ei(t), (27)

where KP ∈ R is the proportional gain. The PI-controller updates the control input as a function
of the spacing error ei(t) and its rate of change ei(t) − ei(t − 1), and how strongly it reacts to the
two terms can be tuned by changing the KP and KI parameters.

While the I- and PI-controllers are easy to implement, they do not consider information about
the number of passengers waiting at the stops or traveling on the buses, which might disturb the
regularity of the spacings. Furthermore, there is no possibility of taking bus speed constraints
explicitly into account with such controllers. Although computationally more cumbersome, the
hybrid MPC specifies a solution for the aforementioned issues of the I- and PI-controllers.





        

3 Results

3.1 Results of a Congested Scenario

A bus loop with Kb = 8 buses and Ks = 32 stops is considered, where each link is 1 km long.
The simulations are conducted using the BTS simulation model recently proposed in Sirmatel
and Geroliminis (2017). Simulation sampling time is T = 10 s (which is found to yield a
close match with smaller sampling times) and control sampling time is Tc = 120 s (i.e., the
states are updated every 10 s whereas the bus speed control decisions are updated every 120 s),
whereas simulation length is chosen as tfinal = 6480 steps, which would correspond to 18 hours
of real BTS operation. Passenger demands are constructed with morning and evening peaks,
and demands to certain stops are chosen higher than the rest for capturing spatial variability and
centers of attraction (i.e., some stops receive higher demands than others because they are more
central). Bus capacity is ni,max = nmax = 80 ∀i ∈ Kb passengers, whereas the maximum passenger
flow parameter is α = 0.5 passenger/s. Due to the formulation of the MLD simulation model
there is no restriction on the number of births (i.e., the number of buses that can simultaneously
serve a single stop). If a second bus arrives at a stop while the bus ahead of it is boarding
passengers (specifying also a bus bunching event that would rarely happen if the BTS is operated
with a bus control system), the passengers will begin boarding both buses. Absolute bounds on
bus speeds are chosen as vmin = 4 m/s and vmax = 20 m/s, whereas the time-varying maximum
link speeds v j,max(t) are generated randomly (with a normal distribution) to simulate the effect of
spatiotemporal variability of traffic conditions.

Controller gains of the I- and PI-controllers are selected as KP = 1.45 and KI = 0.075, while
weighting factor of the hybrid MPC scheme is chosen as σ = 10870, which are found to give
a good balance between regular headways and fast operation. The hybrid MPC scheme, with
a prediction horizon of N = 12 (i.e., a horizon of 120 seconds as T = 10 s) is implemented
using the YALMIP toolbox (Löfberg, 2004), in MATLAB 8.5.0 (R2015a) on a 64-bit Windows
PC with 3.6-GHz Intel Core i7 processor and 16-GB RAM), with the MIQPs solved by calling
Gurobi (Gurobi Optimization, 2016) from YALMIP. The prediction horizon value of N = 12
provides a good balance between performance and computational effort as it roughly covers the
future time period in which buses arrive at their first upcoming stops, while it does not need to
cover longer periods since the rest of the stops are not included in the prediction model as per the
approximation of finite horizon in space. The hybrid MPC scheme is compared with the I- and
PI-controllers. Simulation results with the congested scenario are given in Figs. 1 to 4, whereas
a summary with numerical values of various performance criteria is given in Table 1. In Fig. 1
the bus positions (i.e., time-space diagrams) are shown for a period of simulation time (that
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Figure 1: Bus positions for the first 4 hours of the congested scenario: (a) no control, (b)
I-controller, (c) PI-controller, (d) hybrid MPC.

would correspond to the first 4 hours of real time) for the three proposed controllers, where each
different color represents one bus. From Fig. 1 it can be seen that the no control case creates
significant bus bunching phenomena, while all three controllers are able to regularize spacings.
It is also clear that the hybrid MPC is superior to the others in the sense that it is also successful
in operating the buses faster without any degradation to spacing regularity.

Figure 2 shows total demand
∑Ks

h=1

∑Ks
j=1 βh, j(t) (the same for all controllers; zero values not

shown), mean stop accumulation
∑Ks

h=1

∑Ks
j=1 mh, j(t)/Ks, mean commercial speed

∑Kb
i=1 vi(t)/Kb,

and mean bus accumulation
∑Kb

i=1

∑Ks
j=1 ni, j(t)/Kb, all as functions of time, comparing the three

controllers for the whole simulation length (which would correspond to 18 hours of real time).
Note that these curves are down-sampled in time with averaging in 5 minute intervals for clearer
exposition. From the figure the effect of the morning and evening peaks in the demand on the
BTS performance can be seen clearly: In periods of high demand all controllers suffer from
decreased mean commercial speeds due to higher dwell times, leading to increased passenger
accumulations. Hybrid MPC outperforms the other controllers, however, as it is able to maintain
bus speeds that are around 16% larger than those of the I- and PI-controllers. This translates
especially to comparatively lower levels of accumulations, especially at stops, ultimately yielding
decreased service times.

Figure 3 shows the headway and spacing error distributions of the three controllers are shown,
from which two observations can be made: (1) Regularizing spacings through feedback con-
trol leads to, as expected, headway regularity, as all controllers are able to achieve headway
distributions that resemble normal distributions with reasonably low standard deviations, (2)
hybrid MPC is able to decrease the mean of the headway distribution without any increase in its
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Figure 2: Total demand (a), mean stop accumulation (b), mean commercial speed (c), and mean
bus accumulation (d), as functions of time, for the congested scenario.

standard deviation. From the latter it can be concluded that hybrid MPC can indeed increase
BTS operation speed without harming headway regularity. This is mainly because the hybrid
MPC is able to operate buses at higher speeds. Thus, equal spacing strategies might result in
decreased performance in terms of bus speed and time spent at stops by passengers, as they
overreact and slow down the buses significantly. It is also clear that minimizing spacing error is
not equivalent to minimizing headway standard deviation.

Figure 4 shows the accumulations ni(t) for buses 1, 2, and 3 for the congested scenario, comparing
the I- and PI-controllers and the hybrid MPC. From the figure it can be observed that, compared
to the I- and PI-controllers, the hybrid MPC has a smaller amount of cases with full buses.
Owing to the fact that it can serve the same demand faster (due to higher values of average
commercial speeds without sacrificing headway regularity), the hybrid MPC is able to better
keep the buses away from being completely full, resulting in a higher service quality.

Overall performances (mean time spent at stop (TSS) and in bus (TSB) per passenger, mean
commercial speed (averaged over time and buses), mean and standard deviation of headways,
standard deviation of spacing errors, and computation time for hybrid MPC) are summarized
with the numerical values given in Table 1, where results of a no control (NC) case (i.e., in
which the buses are operated at the maximum possible speed) are also included for comparison.
The no control case suffers from bus bunching and thus experiences excessive TSS, although its
TSB value is slightly lower in relation to the controlled cases owing to a larger mean commercial
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Figure 3: Headway ((a), (c), (e)) and spacing error ((b), (d), (f)) distributions of the congested
scenario (vertical red lines show the mean values, which are 0 for spacing errors by
definition): (a)-(b) I-controller, (c)-(d) PI-controller, (e)-(f) hybrid MPC.
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Figure 4: Accumulations of (a) bus 1, (b) bus 2, and (c) bus 3, for I- and PI-controllers and the
hybrid MPC for the congested scenario.

speed. The I-controller yields a relatively slow operation leading to a higher value of TSS, but
is able to achieve both spacing and headway regularity, with a standard deviation of spacing
errors lower than that of other controllers. Nevertheless, as there is no one-to-one relationship
between headways and spacings under dynamic conditions, achieving headway regularity is
not guaranteed to result in low spacing errors. It is also clear that low spacing errors can result
in slow-moving buses. Compared with the I-controller, the PI-controller is able to achieve
a somewhat faster operation albeit with a trade-off in headway regularity, leading to slightly
decreased values of TSS and TSB but increased standard deviation of headways. Hybrid MPC is
seen to be superior to both controllers in both aspects of fast BTS operation (i.e., lower service





        

times) and headway regularization (i.e., smaller standard deviation of headways): (a) It can
decrease the total service time (TST, i.e., the sum of TSS and TSB) of passengers by 25%
compared to the I- and 17% compared to the PI-controller, (b) it improves headway regularity by
11% compared to the I- and 31% compared to the PI-controller. Performance of the hybrid MPC
is reflected in its smaller mean of headways value, owing to a faster operation, but also smaller
standard deviation of headways, suggesting that it can improve these two conflicting objectives
at the same time. In additional simulation studies, the effect of uncertainty on measurements of
bus accumulations was examined by adding normally distributed noise to the ñi,a(tc) values with
standard deviations up to 5 passengers: From the results it is observed that the performances in
service times and standard deviation of headways show a deterioration up to only 1% compared
to the noise-free case, showcasing the resilience of the hybrid MPC algorithm against errors
in the measurement of ñi,a(tc). The average/maximum computation times of 0.3/0.7 s needed
for solving one instance of the MIQP given in (21) indicate the computational tractability of
the hybrid MPC, suggesting high potential for practical applications requiring real-time control
decisions. One might argue that a different objective function such as minimum TST of all
passengers could be employed. While this is straightforward to implement, the performance of
such a controller is lower than the proposed hybrid MPC, which might look surprising. The main
reason is that the prediction horizon (only one stop ahead) does not allow for a proper prediction
of passenger travel times for the duration of the trip. A very long prediction horizon might be
a solution, but this would lead to loss of real-time feasibility due to excessive computational
burden. Examining this issue should be an interesting research priority.

Table 1: Control Performance Evaluation for a Congested Scenario

performance
criterion

NC I PI HMPC

mean time spent at stop (min) 21.8 9.4 7.6 5.6

mean time spent in bus (min) 13.5 18.7 17.8 15.5

mean commercial speed (m/s) 7.6 5.5 5.7 6.6

mean of headways (min) – 12.2 11.7 10.1

standard deviation of headways (min) – 1.19 1.53 1.06

standard deviation of spacing errors (m) – 398 814 478

mean/max computation time (s) – – – 0.3/0.7





        

3.2 Results of a Set of Congested Scenarios

The congested scenario results given in the previous section represent a single randomly gen-
erated scenario. As the passenger flow demands βh, j(t) and the maximum bus speeds vi,max(t)
are signals including random variables, a single random scenario might not be representative
of the overall situation. Thus, to be able to draw a clearer picture regarding the performance
differences between the controllers, a series of simulation experiments are conducted based on
100 randomly generated scenarios.

The results are summarized in Fig. 5, which shows the histograms of mean TST, standard
deviation of headways, mean commercial speed, and standard deviation of spacing errors for the
100 scenarios, comparing the I- and PI- controllers with the hybrid MPC. The results emphasize
the superiority of the hybrid MPC: On average, it can decrease TST around 20% against the I- and
16% against the PI-controller, at the same time showing an improvement in headway regularity
around 2% against the I- and 30% against the PI-controller. The TST results are also interesting
as they show that the hybrid MPC is more consistent in its performance regarding passenger
delays: While the other controllers have TST values spread around relatively large intervals
(roughly between 24 and 29 minutes for the I- and 23.5 and 27 minutes for the PI-controller),
the hybrid MPC consistently performs in the 20.25-22 minute interval, showcasing the resilience
of its performance in minimizing passenger delays against a diverse set of scenarios. The mean
commercial speed results indicate that the hybrid MPC is able to retain better headway regularity
even though it drives the buses faster (on average, 20% faster than the I- and 16% faster than
the PI-controller) than the other controllers. A better performance in headway regularity is
observed not to directly translate to a higher regularity in spacings, as seen from the spacing
regularity figure. Furthermore, the I-controller is superior to hybrid MPC in terms of spacing
regularity, which can be attributed to the fact that, based on its objective function, the hybrid
MPC is forming a trade-off between fast operation and regular spacings, while the I-controller is
operating only on spacing errors. In any case, passengers do not experience directly the effect
of spacing regulation, what is important for them is time spent on board (i.e., TSB) and while
waiting for a bus to arrive (i.e., TSS), and that buses arrive relatively regularly at the stop (i.e.,
a small standard deviation of headways). Both of these metrics are significantly better using
the hybrid MPC. Overall, the hybrid MPC is successful in achieving a more desirable outcome
in terms of practical performance, as what is important from both the passenger and the bus
operator points of view is the minimization of TST and regularization of headways.
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Figure 5: Histograms of the performance criteria from 100 randomly generated scenarios, com-
paring the I- and PI- controllers with the hybrid MPC: (a) mean total service time, (b)
standard deviation of headways, (c) mean commercial speed, (d) standard deviation of
spacing errors.

4 Conclusion

We developed a novel hybrid MPC scheme based on a simple MLD model for computational
tractability. The hybrid MPC achieves consistently high BTS performance with a dual objective
of spacing regularity and fast operation, by coordinating the buses operating on the loop via
manipulating their speeds in real time. By construction, the proposed MPC formulation results
in MIQPs having convex QP subproblems when the integrality constraints are dropped, enabling
efficient solutions with computation times less than 0.7 seconds. Performance of the hybrid MPC
is compared to classical I- and PI-controllers from literature via detailed simulations. Results
indicate the potential of the hybrid MPC in decreasing service times without degradations in
headway regularity. Performance and real-time tractability of the proposed hybrid MPC suggest
high value for practical applications. Future work could include extensions of the model and
controllers for multi-loop bus systems, establishing stability properties of the controllers, and
comparisons of the proposed model with microscopic BTS simulation frameworks.
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