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Abstract

For an autonomous car, getting surprised is the worst thing that can happen. To prevent that,
plenty of studies are trying to forecast traffic participants’ actions especially in an urban scene
using recurrent networks. Recurrent networks are used for temporal tasks in many application
domains like Natural Language processing and computer vision. Despite the tendency in the
literature to use recurrent neural networks for trajectory prediction, we argue that because of
small dependency in trajectory sequences of a vehicle, a feed-forward neural network can be
used, instead. In this paper, we will compare these two methods in vehicle trajectory prediction
while considering the vanilla models or taking the scene into account. In order to have more
variations in trajectories, roundabouts are used as a case study. Our results show that the
proposed feed-forward network has competitive results with a recurrent network with 6 times
faster processing time.
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Introduction

An autonomous vehicle has to navigate through complex scenes and interact with other cars
without failure. This injects the need to have a clear understanding of other agents’ future
decisions in different road structures. Predicting next movements of a car in a highway is a
straightforward problem which has been addressed repeatedly in the past works Deo and Trivedi
(2018), Altche and de La Fortelle (2017) and Kim et al. (2017). In an urban environment,
however, the problem is more complex due to the inherent complexity and diversity of the road.
In an urban scene, static features of the space are the main factors in every agents’ movements.
Although vehicle interaction with other traffic participants has been widely addressed, despite
the essence, interaction with scene has not gotten much attention so far.

A human driver instantly predicts other agents’ decisions in every scene based on the road
constraints and the past positions of each agent. For instance, in an intersection, it is clear that
each vehicle has a limited set of feasible paths. Inspired by this, an autonomous car should be
able to predict other agents’ future movements by the past positions and physical constraints of
the scene. Moreover, a quick response is vital for autonomous vehicles. It should process the
inputs as fast as possible so the vehicle has enough time for appropriate reactions.

Pioneering work in trajectory prediction has successfully addressed the problem with different
methods. Sadeghian et al. (2018b) used an attention module to incorporate scene features into
the Long-Short Term Memory (LSTM) model. Lee et al. (2017) used an inverse optimal control
(IOC) ranking module that determines the most likely hypotheses while incorporating scene
context and interactions. They also used Recurrent Neural Networks (RNN) to encode and
decode sequences. Xue et al. (2018) proposed a hierarchical encoder-decoder model based on
LSTMs. While all of them have been made great progress in addressing the problem, they used
RNNs which are sequential and can’t be parallelized so have large processing time. Moreover,
LSTMs are vulnerable to parameter tuning and need task-specific engineering like clipping
gradients.

The majority of studies in trajectory prediction in the literature leverage recurrent networks
for modeling the trajectories as recurrent networks are designed for sequence-specific tasks.
However, according to recent studies, feed-forward networks are able to have the same results
as recurrent networks Miller and Hardt (2018). Feed-forwards have some attractive features
which make this substitution appealing. For instance, they could be easily parallelized. Also,
they are less vulnerable to vanishing gradients. More specific to our problem, vehicle trajectory
prediction, trajectories do not have long dependencies which promote the substitution. On the





        

other hand, recurrent networks have some advantages like being able to extract long dependencies
and efficiency for long sequence generation. This controversy motivated us to shed light on their
pros and cons in different aspects of vehicle trajectory prediction. As they are the main building
blocks of different predictors, the results could help when designing a predictor.

In this paper, we will compare the performance of the feed-forward network with the common
LSTM network in the two tasks of modeling only trajectories and modeling trajectories taking
into account scene context. Roundabouts have been chosen as a case study for the scene as they
are rich in having vehicle-scene interactions.

1 Related Work

1.1 Interaction-aware Prediction

Deep learning methods have achieved a wide range of success in different applications and
made the traditional handcrafted methods to be replaced by generic data-driven ones. Alahi
et al. (2016) showed the boost over the well-known hand-crafted model, Social Forces Helbing
and Molnar (1998) by a social LSTM network. LSTMs are recurrent networks designed for
capturing long-term dependencies in sequences and achieved great success in sequence tasks
such as machine translation Chung et al. (2015) and speech recognition Chorowski et al. (2014).
Data-driven methods addressing trajectory prediction can be grouped by the interaction they
attend to. Alahi et al. (2016) proposed a network of LSTMs with pooled hidden layers to model
social interactions between pedestrians. A convolutional method is proposed in Deo and Trivedi
(2018) to tackle the interactions between vehicles in a highway.

Although in pedestrian trajectory prediction, interaction among agents is an important factor, but
agent-scene interaction is more influential in vehicle urban prediction as vehicles are constrained
to the road. ÙDespite the crucial role of scene in trajectory prediction, few studies have
addressed the problem so far. Sadeghian et al. (2018b,a) used a CNN block to extract scene
features followed by an attention module which is in charge of deciding where to look at. Lee
et al. (2017) proposed an encoder-decoder model based on gated recurrent units and employed
pooled scene extracted features in the decoder. A hierarchical structure is used in Xue et al.

(2018) where scene features and social interactions are encoded by LSTMs and the concatenated
encoded values are decoded by another LSTM to achieve predictions. A multi-task learning
approach is presented in Xu et al. (2017) where semantic segmentation is a side task and the





        

segmented context is utilized by the LSTM with the agent history. However, they use car-view
as opposed to our work which uses a bird view instead. Manh and Alaghband (2018) divide the
scene into cells and derive a hidden layer for each cell and use the hidden layers to incorporate
static contexts, yet this information is derived with past trajectories instead of scene image which
injects the need to a large amount of data and poor performance in an unseen scene. The same
issue exists in Zyner et al. (2018), in which the driver intention in roundabouts is predicted. As
they do not use scene image, the model should be used in similar sized intersections which is a
big constraint.

1.2 Feed-forward and Recurrent Networks

While recurrent networks show brilliant results on sequence tasks, it has been shown that the
same results could be achieved by feed-forward networks. The results on the translation task
in Vaswani et al. (2017) and language modeling in Dauphin et al. (2016) are some of the
examples. Miller and Hardt (2018) proved that stable recurrent networks can be approximated
by feed-forward networks. Moreover, an unstable recurrent model can often be made stable
without performance loss. These together mean a feed-forward network can have the same
performance as the recurrent one. Apart from the success of feed-forward networks in sequential
tasks, prediction of trajectories inherently doesn’t have long dependencies as a language model.
All the previous facts promote leveraging feed-forward networks in trajectory prediction. Nikhil
and Morris (2018) used a feed-forward convolutional network in trajectory prediction problem.
However, they didn’t take into account the interaction with the scene. In this paper, we will
employ a feed-forward network and will model agent-scene interaction.

2 Method

2.1 Inputs and Outputs

To do the prediction based on the scene, we need the track histories and the scene around the car.
The trajectories of the vehicle of interest (VOT) are fed to the network as

Xt = [xt−tobs−1, ..., xt−1, xt], where xt = [xt, yt] (1)





        

Figure 1: A pre-processed scene where the previous movements are plotted and the last one is in
big circle

is the coordinates of the VOT at time t. In the real world, the decision of a driver with respect
to the scene is dependent on the space around the VOT rather than the whole scene. Thus, a
cropped segmented image of the scene around the VOT at the prediction time is used as an input
to the network. Also, the same as some other previous works like Cui et al. (2018), Bansal et al.

(2018), the image is pre-processed in a way that VOT appears in the center and the y-axis is the
forward direction of the vehicle. One example of such an image can be seen in Figure 1. The
output of the model will be a sequence of positions as

Yt = [yt+1, yt+2, ..., yt+t pred ], where yt = [xt, yt]. (2)

2.2 Model

To perform the predictions an encoder-decoder structure is employed as Figure 2 which is the
base model used in different works in the literature like Manh and Alaghband (2018). Past
positions are encoded by the encoder to acquire proper representation. The CNN network, which
is in charge of detecting the boundaries of road and off-road regions, processes the scene. The
two extracted features are then concatenated and decoded by a decoder block. Our comparison
is based on two main tasks: modeling trajectories without any other information and modeling
them taking into account scene information. It’s worth mentioning that for the former, the same
model as 2 is used but without the scene branch.

We will use feed-forward (FF) and recurrent neural network (RNN) as the encoder and decoder
blocks of the network. For the FF, we used a multi-layer perceptron (MLP) network with 3
layers of (32, 32, 64) as the encoder and a network with 3 layers of (128, 128, 40) as the decoder.
A long short-term memory (LSTM) is used for the recurrent network. The number of hidden





        

Figure 2: Employed encoder-decoder network

layers for the model is chosen as 128 and the embedding dimension is 64. The CNN network
consists of 2 2-dimensional convolutions with kernel size of 8, stride of 4 and output channels
of 16 and 32. The convolutions are followed by a 128 node fully connected layer.

2.3 Implementation Details

The models are trained with Adam optimizer Kingma and Ba (2015) with weight decay of 10−2

and the initial learning rate of 0.0005 which is decreased by half every 25 epochs. We used
ReLU activation function. The network is trained in an end-to-end fashion with 100 epochs.
The EPFLroundabout dataset is used for training and testing which will be introduced in the
next section. We trained on 3 of our roundabouts and tested on two of them which consist of
an unseen roundabout and a scene which tracks are divided into train and test set. The training
tracks are 88K and the test tracks are 8K. In order to have the same settings for different scenes,
the positions are converted to miters and the sampling rate of videos is 10. The visible scene
of each car for the model is a square with sides of 50 meters with the VOT in the center. The
observation length is 0.9 sec (9 frames) and the prediction length is 2 sec (20 frames) for all
experiments. The model is implemented using PyTorch (Paszke et al., 2017 NiPS Talk).

3 Experiments

3.1 Baselines and Evaluation

A set of different methods have been used as baselines as follows:





        

Table 1: Qualitative results of different baselines on two roundabouts, Route Cantonale which
was used in training data (of course with separated tracks for training and test) and
Morges avenue which is kept unseen to the model. The metrics are ADE and FDE in
parenthesis both in meters. The FF model does the same as the RNN in the two models.

Kalman filter Vanilla FF Vanilla RNN Scene-FF Scene-RNN

Route Cantonale: 1.22 (2.72) 0.85 (1.82) 0.83 (1.74) 0.61 (1.21) 0.59 (1.16)
Morges avenue(unseen): 1.36 (3.07) 1.20 (2.75) 1.16(2.59) 0.98 (2.16) 0.97 (2.14)

• Kalman filter. Kalman filter forecasts by extrapolating past trajectories without any other
information.
• Vanilla LSTM. This method utilizes past trajectories to do the prediction. LSTM models

are used as the encoder and decoder. The model takes into account only trajectories.
• Vanilla FF. An MLP network is used as the encoder and decoder to model trajectories.

The model takes into account only trajectories.
• Scene RNN. A hierarchical network according to Figure 2 where LSTM models with the

mentioned settings at section 2.2 is used. The model takes into account both trajectories
and scene.
• Scene FF . The MLP is used as the encoder and the decoder with the settings explained at

section 2.2. The model takes into account both trajectories and scene.

The prediction error is calculated by the two common metrics in the literature, as in Pellegrini
et al. (2009):

1. Average displacement error (ADE). The average Euclidean distance between the predicted
points and the ground truth over all predicted time steps and vehicles.

2. Final displacement error (FDE). The displacement error between the final predicted point
at the end of the prediction horizon and the actual destination.

3.2 EPFL-Roundabout Dataset

Datasets are one of the key elements in machine learning research. There are plenty of previous
public datasets on vehicle trajectory. However, they are more suitable for interactions among
the agents rather than the static scene context. Noisy annotations, lack of interactions with the
scene and inappropriate camera view injects the need for a dataset rich in scene interactions
with accurate annotations and available video. To answer the essence of a dataset with vehicle-





        

Figure 3: One scene of EPFLRoundabout dataset which is Route de la Pierre roundabout

scene interaction, we captured the EPFL-Roundabout dataset of 4 roundabouts in Lausanne,
Switzerland. We have chosen roundabouts as a case study since they are more complex than
highways or other structured environments. The EPFL-Roundabout dataset is comprised of
drone videos from 4 different roundabouts around EPFL in Lausanne, Switzerland. Each
video provides a top-down view of the cars entering the roundabouts. One example of the
roundabouts can be seen in Figure 3. The dataset is over 2 hours videos of 25 frame per seconds
capturing more than 4500 vehicles which are sufficiently large. The videos are stabilized and
traffic participants are detected and tracked using state-of-the-art methods. The annotations
comprise of the location of the objects, bounding boxes around them and types of the objects in
5 categories (car, truck, bus, pedestrian, cyclist) for every frame.

3.3 Results

We aimed to compare FF and RNN networks. Table 1 shows the quantitative results for different
baselines on two scenes. As we expect, the FF could achieve the same results as the LSTM both
in the vanilla model and the scene model. Also, the scene shows it’s major impact and improved
the results. The results show that our model is generalizable and can perform well on a new
unseen scene.

To visually see the effects of adding the scene to the model, let’s have a look at the qualitative
results. Figure 4 shows the predicted positions for the vanilla and the scene model. Figures 4(a)
and 4(b) show how adding the scene changed predictions. Without the scene, the model only
extrapolates past positions. However, the scene model observes the road and the prediction turns
due to the road shape. The predicted points in Figure 4(c) end in the off-road part of the image





        

Figure 4: Qualitative analysis: The observation (in green), the vanilla prediction (in red), the
scene model prediction (in white) and the ground truth (in black) are shown.

(a) By extrapolating the past po-
sitions, the vanilla model
predicts a continues turn but
the scene model detects the
road and enters it.

(b) The vehicle is having a
small turn to exit round-
about but the vanilla takes
it as a turn. However that
is not the case for the scene
model.

(c) Although the scene model
predicts better than the
vanilla one, the prediction
is off-the-road which shows
the model should still be bet-
ter.

which shows the model should be improved. The wrong predictions could be due to having only
one output trajectory rather than multiple plausible ones which causes the output to be the mean
of them. We will count some ideas to improve the performance in the next section.

3.4 Response time

FF networks are able to be parallelized, however, RRN networks are inherently sequential and
thus, slow to train and test. For an LSTM network, input sequence should be given to the model
one by one and the output is generated sequentially. However, in the FFs, the outputs can be
calculated independently. We assessed the two networks with respect to the test time which is
the average time to predict each input sequence. Due to Table 2, MLP is more than 11 times
faster than LSTM because of the parallelized calculations. Note that the reported time includes
the pre-processing part and is measured leveraging Nvidia GTX 1080 GPU. The MLP result is
promising and suitable for real-time applications.





        

Table 2: Average time of the scene MLP and scene LSTM models to calculate the prediction for
each input.

Test time (sec)

Scene LSTM 0.016
Scene MLP 0.0014

3.5 conclusion and Future work

In this paper, we studied the performance of a FF and an RNN network on the task of vehicle
trajectory prediction. We showed that the FF can achieve the same results as the RNN in both
vanilla and scene models with 11 times faster test time. This encourages using FF models in
previous RNN based solutions which probably results in the same performance with a faster
response time.

Regarding modeling the scene, which is the most important part of vehicle prediction, we
showed that we can predict vehicle trajectories using the scene with noticeable improvements
over vanilla models. However, the model needs to better perceive the scene. Injecting human
knowledge to the model could help its understanding a lot. As an example Bansal et al. (2018)
add a loss function to avoid off-road predictions. We will add such information to the model to
improve the performance. Also, predicting vehicle trajectory doesn’t have a unique answer most
of the times as it is a probabilistic problem. We will add multi-modality to the model to have
multiple plausible predictions with their probabilities. The next step after modeling the scene
is to take into account other vehicles. Due to our results, FF has better features than recurrent
networks in vehicle trajectory prediction. Based on that, we will study their ability to acquire
joint distribution of vehicles in the scene.
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