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Abstract

Oligopolistic competition occurs when a small number of operators compete for the same pool
of customers. This is often the case in transportation, due to reasons such as external regulations,
economies of scale and limited capacity of the infrastructure. We present a demand-based
optimization approach to study market equilibria in oligopolies. The framework takes into
account interactions between demand and supply as well as competition among suppliers. In
particular, the preferences of the customers are modelled at a disaggregate level according to
random utility theory, while competition is modelled as a multi-leader-follower game. To find
equilibrium solutions, we propose a fixed-point optimization model which can incorporate both
nonlinear and linearized customer choices probabilities. Due to its complexity, the model can
only tackle small-size instances with restricted strategy sets. Finally, we include a preliminary
description of a heuristic approach that can be used to efficiently select for all competitors a
subset of strategies that have the potential to produce equilibrium or near-equilibrium solutions.
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1 Introduction

Competition in transportation is a multifaceted phenomenon. On the demand side, users compete
with other users on the road, to avoid congestion and minimize their travel time, and on public
transport, to purchase the cheapest tickets or maximize the comfort of their journey. Users
also compete with transport operators, which represent the supply side and aim at achieving
an optimal configuration of their system and maximize their profit, social welfare or any other
relevant objective. Moreover, in non-monopolistic markets, transport operators compete on
price, quantity, quality and other features to attract customers, while acting themselves as
customers of other service providers like the infrastructure owners, who for example allocate
departure and arrival slots at airports or track possessions in railways. These examples show how
complex competitive markets are and how daunting of a task it would be to consider all direct
interactions between all market agents. The focus of our research is directed to oligopolistic
markets, in which we model operator-customers and operator-operator interactions, which
fit into the frameworks of Stackelberg games and Nash non-cooperative games respectively.
Historically, the airline industry has been the most studied case of oligopoly in transportation,
but intercity train and bus operators as well as urban on-demand transport service providers
also operate in oligopolistic conditions in an increasing number of cases. The objective of this
work is to analyze oligopolistic markets using a demand-based optimization framework that is
mathematically sound and computationally tractable, and that could therefore be used to analyze
case studies in transportation as well as in other markets.

The rest of the paper is organized as follows. Section 2 contains the literature review. Section
3 presents the modelling framework, which includes demand, supply and market interactions,
and details a fixed-point optimization model to find market equilibria. Section 4 reports the
results of some numerical experiments which identify strengths and weaknesses of the proposed
formulations. Finally, Section 5 summarizes the outcomes of this work and describes the next
steps of the research project, which include the development of a heuristic approach to generate
restricted sets of strategies to be used as input to the fixed-point optimization model.

2 Literature review

In this section we start by introducing the fundamental game theoretical concepts and results
that are relevant to study equilibrium problems. Then, we illustrate the main approaches that
have been proposed to study oligopolistic markets and we explain why alternative methods are
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needed when modelling demand at a disaggregate level. Finally, we motivate the need for the
integration of demand and supply into a unique framework and we look into the literature on
demand-based optimization models.

2.1 Equilibrium

The discipline that studies competition between groups of decision-makers when individual
choices jointly determine the outcome is known as game theory. An overview of the principal
game theory concepts can be found in Osborne and Rubinstein (1994). We consider here two
types of non-cooperative games, namely the Nash game and the Stackelberg game. The Nash
game (Nash, 1951) considers players who have equal status and who can affect their competitors’
decisions by changing their strategy unilaterally. In such setting, we define as Nash equilibrium
solution of the game a state in which no player can improve its payoff by unilaterally changing
his decision. The Stackelberg game (Von Stackelberg, 1934) features two players, identified as
leader and follower, both trying to optimize their own objective function. The leader is assumed
to know the follower’s best responses to all the leader’s strategies, and will therefore optimize
its decisions accordingly.

A number of definitions should be introduced before discussing equilibria of non-cooperative
games. A game is finite when all players have a finite number of moves and a finite number of
strategies at each move, otherwise it is infinite. In terms of strategies, in a pure strategy game all
players choose one move from their strategy set, while in a mixed strategy game they assign a
probability to each pure strategy. Finally, players can have a continuous or a non-continuous
payoff function, with the former option being impossible for finite pure strategy games.

Two categories of problems dealing with equilibria are recurrent in the literature: (i) proving
the existence of a Nash equilibrium for a given game, and (ii) finding one Nash equilibrium
solution of a game. For the first category, Nash (1950) demonstrates that finite games have at
least one mixed strategy equilibrium solution, while Glicksberg (1952) extends Nash’s results to
games with compact strategy sets and continuous payoff functions. For the second category, it
has been demonstrated that the problem of finding Nash equilibria belongs to the complexity
class PPAD (Papadimitriou, 1994). Well-known algorithms to find Nash equilibria include
the Lemke-Howson algorithm (Lemke and Howson, 1964) and the Porter-Nudelman-Shoham
algorithm (Porter et al., 2008), while a mixed integer program formulation to find Nash equilibria
is introduced in Sandholm et al. (2005). An overview of several algorithmic methods used to
find Nash equilibria under different circumstances is provided by Nisan et al. (2007).
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While the most important theoretical concept used to analyze both perfectly competitive and
oligopolistic markets is that of equilibrium, in the economic literature it is widely acknowledged
that the utility maximization behavior is unlikely to hold true for all agents. The situation in
which no nonmaximizing agent would gain a significant amount by becoming a maximizer is
defined as near-rational equilibrium or epsilon-equilibrium. Akerlof et al. (1985) consider an
economy in which a fraction of the population does not maximize its utility. Inertia and the use of
rules of thumb in the decision-making process are mentioned as reasons that explain non-rational
behavior. It is shown that first-order errors made by an agent on its decision variables cause
profit losses that are only second-order small, but in turn the changes in the equilibrium can be
first-order. The implication is that the equilibrium solutions derived from models with strictly
maximizing behaviors are not robust and small deviations from rationality can make significant
differences in equilibria.

2.2 Competition in oligopolies

The theory of competition in non-cooperative games has been extensively used to analyze
oligopolistic markets, where a small number of firms are active and have non-negligible market
power. The first contributions date back to the seminal works by Cournot (1838) and Bertrand
(1883), which analyze a market where an homogeneous product is sold to an homogeneous
population and where firms compete on quantity and price, respectively. Hotelling (1929)
proposes a duopolistic game in which firms decide on the location of production and on the price
of the product, while the homogeneous and inelastic demand is distributed along a line, which
affects the cost of transportation from producers to customers. By using a spatial model, he
questions the assumption used by Bertrand (1883) and Edgeworth (1925) that consumers abruptly
change their product choice when a seller marginally decreases its price. Hotelling argues that
stability in such competitive game is achieved when there is little product differentiation across
producers and identifies price discrimination and elastic demand as two modification elements
needed to make the model of the market more realistic. Gabszewicz and Thisse (1979) consider
consumers having identical preferences but variable incomes who make indivisible and mutually
exclusive purchases. In a duopolistic market, income differentiation is shown to support product
differentiation, contrarily to what Hotelling’s model seemed to suggest. The authors also notice
that (i) the existence of a Cournot equilibrium requires the continuity in the demand function
and (ii) the proof of existence based on fixed-point arguments is based on the quasi-concavity
of the profit functions. Murphy et al. (1982) propose a mathematical programming approach
to find market equilibria in an oligopolistic market supplying an homogeneous product, in
which firms must determine their production levels. Assumptions are made on the revenue
curves which must be concave, on the demand curve which must be continuously differentiable
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and on the supply curve which must be convex and continuously differentiable. When these
assumptions hold, the equilibrium solution can be found by solving the Karush-Kuhn-Tucker
conditions for the optimization problems of the firms. Maskin and Tirole (1988) propose a
class of alternating-move models of duopoly in which firms are committed to a certain action in
the short-term, thus allowing time for the other firm to react. Firms can choose actions from a
bounded set and profits are exclusively dependant on the current actions. The latter assumption is
in contrast with the repeated game treatment of oligopolies, proposed for example by Rotemberg
and Saloner (1986). Due to the time-independence assumption, equilibrium solutions in the
resulting game are Markov perfect equilibria. The general model is applied to a market where
firms compete on quantities and where large fixed costs are present which make the market a
natural monopoly.

The researches presented above, together with more recent contributions, share the common
finding that the existence of an equilibrium is only guaranteed thanks to assumptions made
on the demand side which are often simplistic and unsuitable to model real-life markets. In
particular, in our work we are interested in discrete goods markets in which individuals have
different tastes and socio-economic characteristics which influence their decision when making
unitary and mutually exclusive purchases. This situation is frequent in the transportation sector.
By modelling demand at a disaggregate level using discrete choice models, the profit function
of the firms becomes non-concave, thus invalidating any results about the existence and the
uniqueness of equilibrium solutions for such markets. For this reason, in our work we want to
explore alternative mathematical models and algorithms to study oligopolistic markets, while
retaining the microeconomic foundations on which the presented literature is grounded.

2.3 Demand-based optimization

Demand-based (or choice-based) optimization models have been proposed to analyze customer
behavior at a disaggregate level and incorporate it into the optimization problem of the suppliers.
Thanks to a better estimation of customer preferences, suppliers can then improve many of their
strategic decisions.

Historically, demand modelling and supply optimization have been treated as two separate
problems, requiring different methodologies to be solved. On the demand side, discrete choice
models aim at capturing the complex relations that link customers’ individual tastes and socio-
economic characteristics to their choices. Because of such complexity, discrete choice models
are nonlinear and non-convex models. Consequently, merging demand modelling and supply
optimization in the same framework requires a trade-off between complexity and computability.
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Generally, demand-based optimization models can be modelled as Stackelberg games. Equiv-
alent Stackelberg problems are common in transportation and in other markets when a single
supplier or regulator knows the utility functions of its potential customers, who collectively play
the follower role. From a mathematical modelling perspective, the result is an optimization
problem having optimization problems in the constraints (Bracken and McGill, 1973), also
known as bilevel program. An overview of bilevel optimization is provided by Colson et al.

(2007).

In the literature, applications of demand-based optimization models include revenue management
(Andersson, 1998, Talluri and Van Ryzin, 2004) and road tolling (Labbé et al., 1998), among
others. If we consider the works where discrete choice models are used to model demand, a
majority of them propose nonlinear formulations and estimate customer choice probabilities
with the multinomial logit model (MNL), whose advantage is the existence of a closed-form
expression. However, MNL does not permit to consider random taste variation or correlation
between alternatives. These limitations of the MNL led to the definition of more complex
discrete choice models, such as the nested logit model (Ben-Akiva and Lerman, 1985), which
relaxes the independence of irrelevant alternatives (IIA) assumption, and the mixed multinomial
logit model, which can approximate any discrete choice model derived from random utility
maximization under mild regularity conditions (McFadden and Train, 2000). A framework that
can integrate any type of discrete choice model in a mixed integer linear program is introduced
in Pacheco Paneque et al. (2017).

3 The modelling framework

3.1 Demand modelling

A market is considered where a number of different products are offered to a population.
Customers are assumed to be utility maximizers who can only make a unitary and mutually
exclusive purchase.

The notation is as follows. Let N represent the set of customers and let I indicate the set of
choices available in the market. Utility functions Uin are defined for each customer n ∈ N and
alternative i ∈ I. Each utility function takes into account the socio-economic characteristics and
the tastes of the individual as well as the attributes of the alternative. According to random utility
theory (Manski, 1977), Uin can be decomposed into a systematic component Vin which includes
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all that is observed by the analyst and a random term εin which captures the uncertainties caused
by unobserved attributes and unobserved taste variations. As a consequence, the resulting
discrete choice models are naturally probabilistic. The probability that customer n chooses
alternative i is defined as Pin = Pr[Uin = max j∈IU jn]. In order to be able to estimate choice
probabilities, assumptions must be made about the distribution of the error term. The two most
used classes of discrete choice models, the probit and the logit, are built upon the assumption
of normally distributed and Gumbel distributed error terms, respectively. For the sake of our
discussion, it is worth pointing out that only logit models have a closed-form expression of
the choice probabilities, which is nonlinear and non-convex. On the other hand, the choice
probabilities of other models, including probit, must be expressed as integrals and approximated
numerically, for instance by using simulation procedures (Train, 2009). As a result, while
discrete choice models can accurately capture heterogeneous behavior on the demand side
at a disaggregate level, their mathematical properties make it difficult to incorporate them in
optimization models.

Pacheco Paneque et al. (2017) propose a linear formulation of the choice probabilities obtained
by relying on simulation to draw from the distribution of the error term of the utility function.
For each customer n and alternative i, a set R of draws are extracted from the known error term
distribution, corresponding to different behavioral scenarios. For each scenario r ∈ R, the error
term parameter ξinr is drawn and the utility becomes equal to Uinr = Vin + ξinr. Customers then
deterministically choose the alternative with the highest utility, i.e. Pinr = 1 if Uinr = max j∈IU jnr

and Pinr = 0 otherwise. Over multiple scenarios, the probability that customer n chooses
alternative i is equal to the number of times the alternative is chosen over the number of draws,
i.e. Pin =

∑
r∈R Pinr
|R| . With a sufficient number of simulation draws, the obtained choice probabilities

approximate the analytical formulation within a confidence interval.

3.2 Supply modelling

Suppliers are modelled as profit maximizers, according to the traditional microeconomic treat-
ment and without loss of generality, but their goal could also be related to indicators other than
profit. To optimize their objective function, suppliers must take strategic decisions about the
availability of their products on the market and the corresponding attributes such as price and
quantity. We assume that suppliers base their strategies on their knowledge of demand at a
disaggregate level, which captures heterogeneity across the population, by incorporating discrete
choice models into their optimization problem. The framework of the Stackelberg game models
well the interaction between a supplier, acting as leader, and the customers, who represent the
collective follower.
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In addition to the notation introduced in §3.1, consider a supplier k participating in the market
and let Ik ⊂ I indicate the choices controlled by the supplier. Additionally, let Sk be the set of
strategies that can be selected by the supplier. Each strategy s ∈ Sk is composed of a vector
of decision variables, which we can separate into the vector p of all prices pin for alternatives
i ∈ Ik and customers n ∈ N and a generic vector X of all other decision variables. At this point,
no assumption is made on the strategy set, which could be finite or infinite, or on the type of
decision variables, which could be discrete or continuous.

For the sake of simplicity, the presented models assume that choice probabilities are estimated by
using a multinomial logit model. The nonlinear version of the supplier’s optimization problem
can be written as follows:

max
s

zs =
∑
i∈Ik

∑
n∈N

pinPin −
∑
i∈Ik

ci(Xi), (1)

s.t. Pin =
exp(Vin)∑
j∈I exp(V jn)

∀i ∈ I,∀n ∈ N (2)

Vin = βp,in pin + βinXin + qin ∀i ∈ I,∀n ∈ N. (3)

The objective function (1) maximizes the profit of the supplier, calculated as the difference
between the revenues obtained from the sales and the cost of offering the products. Notice that
the function is generally non-convex due to the presence of the choice probabilities. Constraints
(2) derive the choice probabilities. Constraints (3) define the deterministic utility functions,
composed of an exogenous part qin and an endogenous part which depends on the chosen strategy
s = (p, X), which links the upper-level problem with the lower-level problem.

For the linearized version of the model, we additionally define the auxiliary variables Unr =

maxi Uinr, which capture the value of the highest utility for customer n in scenario r, while
the binary decision variables Pinr identify the alternative i chosen by each customer n in each
scenario r. Now constraints (2-3) can be written as follows:
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s.t. Pin =

∑
r∈R Pinr

|R|
∀i ∈ I,∀n ∈ N (4)

Uinr = βp,in pin + βinXin + qin + ξinr ∀i ∈ I,∀n ∈ N,∀r ∈ R (5)

Uinr ≤ Unr ∀i ∈ I,∀n ∈ N,∀r ∈ R (6)

Unr ≤ Uinr + MUnr (1 − Pinr) ∀i ∈ I,∀n ∈ N,∀r ∈ R (7)∑
i∈I

Pinr = 1 ∀i ∈ I,∀n ∈ N,∀r ∈ R (8)

Pinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N,∀r ∈ R. (9)

The utility functions (5) now include a drawn error term. Constraints (6-9) ensure that in each
behavioral scenario customers deterministically choose the alternative yielding the highest
utility.

3.3 Market modelling

Let us consider an oligopolistic market where we model demand as in §3.1 and supply as in
§3.2. Due to oligopolistic market power, the payoff of each supplier is now a function of both
the decisions of the customers and the strategies of the competitors. In other words, there are
multiple suppliers that simultaneously solve a demand-based optimization problem. The result
is a non-cooperative multi-leader-follower game in which each leader solves a best-response
problem. In our framework, we search for pure strategy Nash equilibrium solutions of the static
game.

The fixed-point iteration algorithm is a common approach to search for Nash equilibrium
solutions in competitive markets. In transportation, examples include Fisk (1984) and Adler
(2001), among others. Starting from an initial feasible solution to the problem, operators take
turns in solving their best-response problem to the current market situation. Such sequential
game terminates when a solution already reached in one of the previous iterations is repeated,
as it would induce the same sequence of best responses as before. The solution of this game
can be either a pure strategy Nash equilibrium for the game or a set of strategies for each
player which would continue to be played cyclically. Modelling competition as a sequential
game is attractive from a computational perspective, since the complexity of the problem is
equivalent to the complexity of the Stackelberg game presented in §3.2. Furthermore, the
sequential game is easily interpretable, since it reproduces the dynamic behavior of two or more
players that do not know the competitors’ objective function and are reactive to market changes.
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However, the convergence proof of the algorithm depends on conditions such as having a convex
payoff function, which are not verified in the multi-leader-follower game we want to solve.
Consequently, by solving the problem as a sequential game there is no guarantee that a pure
strategy Nash equilibrium exists or, if one is found, that it is unique. Moreover, different initial
strategies could lead to different equilibria. All this means that in our research we can look at
the fixed-point iteration algorithm as a heuristic approach rather than as an exact method.

3.3.1 A fixed-point MIP model

We propose a mixed integer programming model inspired by the fixed-point iteration algorithm.
The key idea at the root of this model is to solve the sequential game as a one-step model by
considering only two iterations of the fixed-point algorithm. We define as distance between
two consecutive solutions a non-negative value measuring the difference in operators’ decisions,
in customers’ decisions, or a mix of the two. If we start from an equilibrium solution of the
problem, the distance between the initial solution and the next iteration’s solution is equal to 0.
On the other hand, if we do not start from an equilibrium solution, the distance is greater than 0,
since at least one of the players changes its strategy.

To formalize, let K represent the set of suppliers, each controlling a subset of the alternatives that
are available to the customers. We impose that ∪k∈K Ik ⊂ I, in order not to have a captive market
and allow customers to leave it without purchasing. Each supplier k ∈ K has a set of strategies
Sk from which to choose. We define the vector parameters ps and Xs of the prices and of the
other decisions of the supplier k playing strategy s ∈ Sk. If we define as zs the payoff obtained
by supplier k when choosing strategy s, then in order to find a Nash equilibrium solution we
need to verify that z∗s = zmax

k = maxs∈Sk zs(s, sK\{k}) ∀k ∈ K. The binary decision variables xs are
equal to 1 if strategy s ∈ Sk is the best response of operator k to the initial configuration. Finally,
the superscripts

′

and
′′

are used to indicate the variables of the initial configuration and of the
best response configurations, respectively.

Then, the MIP model with linearized choice probabilities can be written as follows:
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min
∑
k∈K

(|p
′′

k
− p

′

k
| + α|X

′′

k
− X

′

k
|) (10)

s.t. Initial configuration:

U
′

inr = βp,in p
′

in + βinX
′

in + qin + ξinr ∀i ∈ I,∀n ∈ N,∀r ∈ R (11)

U
′

inr ≤ U
′

nr ∀i ∈ I,∀n ∈ N,∀r ∈ R (12)

U
′

nr ≤ U
′

inr + MUnr (1 − P
′

inr) ∀i ∈ I,∀n ∈ N,∀r ∈ R (13)∑
i∈I

P
′

inr = 1 ∀i ∈ I,∀n ∈ N,∀r ∈ R (14)

Final configuration:

U
′′

inrs = βp,in p
′′

ins + βinX
′′

ins + qin + ξinr ∀i ∈ Ik,∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (15)

U
′′

inrs = U
′

inr ∀i ∈ I \ Ik,∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (16)

U
′′

inrs ≤ U
′′

nrs ∀i ∈ I,∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (17)

U
′′

nrs ≤ U
′′

inrs + M(1 − P
′′

inrs) ∀i ∈ I,∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (18)∑
i∈I

P
′′

inrs = 1 ∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (19)

Pins
′′ =

∑
r∈R P

′′

inrs

|R|
∀i ∈ I,∀n ∈ N,∀s ∈ Sk (20)

Best response constraints:

zs =
∑
i∈Ik

∑
n∈N

pinsP
′′

ins −
∑
i∈Ik

ci(Xis) ∀s ∈ Sk,∀k ∈ K (21)

zs ≤ zmax
k ∀s ∈ Sk,∀k ∈ K (22)

zmax
k ≤ zs + M(1 − xs) ∀s ∈ Sk,∀k ∈ K (23)∑

s∈Sk

xs = 1 ∀k ∈ K (24)

P
′

inr, P
′′

inrs ∈ {0, 1} ∀i ∈ I,∀n ∈ N,∀r ∈ R,∀s ∈ Sk,∀k ∈ K (25)

xs ∈ {0, 1} ∀s ∈ Sk,∀k ∈ K. (26)

The objective function (10) minimizes the sum over all the suppliers of the distances between the
final and the initial strategies. The absolute values can be linearized by expressing the arguments
as the differences of two non-negative variables and by minimizing the sum of these variables in
the objective function. Notice that different strategic decisions can have different units, therefore
appropriate scale parameters must be defined when needed. Constraints (11-14) define the
utilities and impose that customers choose the alternative with the highest utility in the initial
configuration. Constraints (15-19) impose the utility maximization principle in the best response
configurations. Here, utilities are evaluated for all strategies of all operators. In each strategic
scenario, the decisions of the optimizing operator only affect the utility of its alternatives (15),
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while the utilities of the competitors’ alternatives remain as in the initial configuration (16).
Finally, constraints (20-24) state that operators always select the best response strategy to the
initial configuration.

This MIP model is a one-step approach to find Nash equilibrium solutions for a competitive
market by means of any MIP solver. Starting from an initial configuration, the model requires
a number of strategic scenarios to be solved that is equal to

∑
k∈K |Sk|. Compared to the

sequential game, it can also find near-equilibrium solutions, if no Nash equilibrium exists.
Additionally, it enables discrimination between different equilibrium and near-equilibrium
solutions by modifying the objective function. The same fixed-point model can incorporate
nonlinear probabilistic customer choices. The description of the nonlinear case is omitted here.
Numerical experiments that compare the two models are presented in §4.2.

4 Numerical experiments

This section discusses the results of some experiments aimed at understanding the properties
of the models introduced in §3. The case study used for the tests is derived from Ibeas et al.

(2014), where the choice of customers among three different parking alternatives is modelled
with a mixed logit model. For the Stackelberg game we assume that two of these alternatives
(paid underground parking and paid on-street parking) are managed by the same operator, while
the third alternative (free on-street parking) is considered as the opt-out option, since it does not
provide any revenue to the operator. For the multi-leader-follower game we assume that two of
the three parking alternatives are managed by two different operators competing with each other,
while the third alternative is kept as opt-out option. We further assume that for each alternative
the operator decides on a unique price to be proposed to all customers. The test instances have
the following size: 3 alternatives, 5-50 customers, 50-200 behavioral scenarios. All the proposed
model are solved through the NEOS Server (Czyzyk et al., 1998). MILP models are solved
using CPLEX 12.7.0, while NLP and MINLP models are solved using Artelys Knitro 10.3.0.

4.1 The Stackelberg game

The nonlinear and the linear demand-based optimization models presented in §3.2 were tested
on two discrete choice specifications, namely the multinomial logit model and the mixed logit
model. The main difference between the two lies in the fact that the latter one allows for random
taste variation by assuming a distribution for the taste coefficients. This implies that for the
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Instance MILP NLP

DCM N R Time (s) Obj p1 p2 d1 d2 Time (s) Obj p1 p2 d1 d2

Logit 10 100 921 6.44 0.67 0.72 0.92 8.07 0.02 6.36 0.83 0.71 0 8.92
Logit 10 200 7027 6.43 0.66 0.72 0.99 8.05 0.02 6.36 0.83 0.71 0 8.92
Logit 50 50 7105 32.09 0.68 0.71 1.42 43.88 0.06 31.93 0.71 0.72 0.43 43.86
Logit 50 100 55020 32.19 0.68 0.73 2.80 41.66 0.06 31.93 0.71 0.72 0.43 43.86
Mixed 10 100 2378 5.38 0.55 0.63 2.72 6.18 0.05 5.31 0.55 0.63 2.79 6.03
Mixed 10 200 3942 5.21 0.54 0.61 2.94 5.95 0.29 5.22 0.56 0.64 2.96 5.60
Mixed 50 50 13285 27,33 0,58 0.67 13.80 29.08 0.45 27.20 0.58 0.66 13.64 29.06
Mixed 50 100 72000* 27,00* 0,56* 0.65* 13.92* 29.58* 0.70 26.92 0.56 0.66 14.79 28.39

Table 1: Numerical experiments on the Stackelberg game (uncapacitated)

Instance MILP MINLP

DCM N R Time (s) Obj p1 p2 Time (s) Obj p1 p2

Mixed 5 100 518 2.28 0.58 0.74 3 1.96 0.70 0.84
Mixed 5 200 4428 2.30 0.55 0.70 35 2.04 0.70 0.85
Mixed 10 100 4564 4.85 0.58 0.73 12 4.84 0.64 0.78
Mixed 10 200 72000* 4.70* 0.58* 0.68* 26 4.75 0.63 0.77
Mixed 50 50 72000* 26.09* 0.61* 0.77* 163 26.51 0.60 0.76
Mixed 50 100 72000* 25.71* 0.60* 0.74* 661 26.19 0.59 0.75

Table 2: Numerical experiments on the Stackelberg game (capacitated)

mixed logit it is necessary to simulate choice probabilites using Monte Carlo draws (Train,

2009).

Tables 1 and 2 show the results of the uncapacitated and of the capacitated instances, respectively.
The latter ones include capacity constraints on the two operated alternatives, which require the
use of binary variables that express whether an alternative is or is not available to a customer due
to capacity limits. The experiments show that the nonlinear model converges much faster than
the MILP model in all cases, and that computational times for the capacitated case are always
higher than for the uncapacitated case. At this point we cannot draw conclusions on the effect
of integrality constraints on the MINLP model, even though a sharp increase in computational
time and the impossibility to converge to the optimal solution are expected when more integer
variables are added to the model. The performance of the MILP model is primarily related to
its combinatorial nature and to the weak formulation of the linear relaxation, which could be
improved by adding valid inequalities.

Finally, we can observe that the choice probabilities and the demand shares of the MILP and
NLP formulations are comparable in the three larger instances (N = 50) where both models
converge, and this is confirmed by the experiments for the competitive case presented next.
This indicates that using simulation to draw from the error term distribution leads to choice
probabilities that approximate well those obtained with the probabilistic formulas.
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Instance MILP MINLP

DCM N R Time (s) Obj p1 p2 d1 d2 Time (s) Obj p1 p2 d1 d2

Logit 5 50 68 0 0,05 0,15 1,28 3,72 78 0 0,05 0,15 1,54 3,46
Logit 5 100 203 0 0,05 0,15 1,65 3,35 78 0 0,05 0,15 1,54 3,46
Logit 5 200 818 0 0,05 0,15 1,55 3,45 78 0 0,05 0,15 1,54 3,46
Logit 10 50 208 0 0,05 0,15 2,74 7,26 94 0 0,05 0,15 2,85 7,15
Logit 10 100 3679 0 0,05 0,15 2,86 7,14 94 0 0,05 0,15 2,85 7,15
Logit 10 200 5595 0 0,05 0,15 2,84 7,16 94 0 0,05 0,15 2,85 7,15
Logit 50 25 6894 0 0,05 0,15 11,20 38,80 1151 0 0,05 0,15 10,72 39,29
Logit 50 50 16400 0 0,05 0,15 10,60 39,40 1151 0 0,05 0,15 10,72 39,29
Logit 50 100 6124 0 0,05 0,15 10,81 39,19 1151 0 0,05 0,15 10,72 39,29
Mixed 5 50 70 0 0,10 0,20 1,96 3,04 849 0 0,10 0,20 2,05 2,95
Mixed 5 100 170 0 0,15 0,20 1,52 3,48 747 0 0,10 0,20 2,22 2,78
Mixed 5 200 1013 0 0,10 0,20 2,13 2,87 2962 0 0,10 0,20 2,07 2,93
Mixed 10 50 291 0 0,15 0,25 4,16 5,84 2019* 0,09* 0,30* 0,39* 3,95* 6,05*
Mixed 10 100 2204 0 0,15 0,25 3,84 6,16 3499 0 0,10 0,20 3,92 6,08
Mixed 10 200 3589 0 0,10 0,20 4,17 5,83 4413 0 0,10 0,20 4,18 5,82
Mixed 50 25 985 0 0,10 0,20 17,24 32,76 7035 0 0,10 0,20 17,09 32,91
Mixed 50 50 13923 0 0,15 0,25 18,28 31,72 16242* 0,19* 0,13* 0,32* 31,42* 18,58*
Mixed 50 100 28682 0 0,15 0,25 18,31 31,69 36000* - - - - -

Table 3: Numerical experiments on the fixed-point MIP model

Instance MILP MINLP

DCM N R |S k | Time (s) Obj p1 p2 Time (s) Obj p1 p2

Logit 10 100 11 3679 0 0,05 0,15 94 0 0,05 0,15
Logit 10 100 21 16524 0 0,02 0,10 194 0 0,02 0,10
Logit 10 100 31 59096 0 0,02 0,11 719 0 0,02 0,11
Mixed 10 100 11 2204 0 0,15 0,25 3499 0 0,10 0,20
Mixed 10 100 21 4023 0 0,12 0,22 11006* 0,05* 0,19* 0,26*
Mixed 10 100 31 5017 0 0,12 0,21 19401* 0,02* 0,11* 0,19*

Table 4: Numerical experiments to test the effect of the strategy set size

4.2 The multi-leader-follower game

For the competitive case, we report the numerical experiments performed using the fixed-point
optimization model outlined in §3.3.1. Table 3 shows that in the case of a logit formulation
the nonlinear model converges faster to optimality, as there is no need for simulation. On the
other hand, when using a mixed logit formulation, the linear model generally outperforms the
nonlinear model, which fails to converge on larger instances. Compared to the results of the
Stackelberg game, the substantial worsening of the computational performance of the nonlinear
model can be imputed to the discretized price parameters and to the binary decision variables
of the upper-level problems, while the relatively good performance of the MILP model can be
explained by the reduction of the solution space due to the limited set of response strategies.
In particular, it can be seen that the linear model, which is structured around a simulation
framework, has similar computational performances on the logit and the mixed logit model. The
latter finding is particularly encouraging, because it indicates that the MILP formulation for
the demand-based optimization model could potentially embed the most complex and accurate
discrete choice models. Finally, Table 4 shows that, as expected, computational times are
influenced by the size of the players’ strategy set.
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4.3 Discussion

The numerical experiments performed so far indicate that the main factors affecting the com-
putational performance of the different models include the form of the choice probabilities
(nonlinear or linearized) at the demand level and the type of decision variables (continuous or
discrete) at the supply level. On one side, the nonlinear formulation is non-convex. This means
that it can be efficient when all the supply decision variables are continuous and the problem is
well-conditioned, but it becomes intractable when many discrete variables are introduced, since
convergence cannot be proved due to local optima. On the other side, the linear formulation is
convex, but the combinatorial nature of the simulation framework makes it unfit to solve realistic
multi-leader-follower games.

The fixed-point MIP model presented in §3.3.1 has shown promising results, but its large scale
applicability depends on the quality of the strategy set generation techniques that are employed
to select potential equilibrium solutions and best-response strategies for all competitors. In
the numerical experiments, an arbitrary price discretization has been applied, but the inclusion
of capacity variables, price discrimination across customers or multiple alternatives for each
supplier would make the strategy sets of the original problem grow exponentially. For this
reason, the fixed-point MIP model could constitute one of the final blocks of an algorithmic
approach, using as input the candidate solutions found in the earlier stages. The model’s ability to
discriminate between different equilibrium or near-equilibrium solutions could then be exploited,
also at an applied level, to test different objective functions and competitive behaviors.

5 Conclusions and future research

In this paper, we presented a demand-based optimization framework to model competition
in oligopolistic markets. We described our methodological approach which includes three
components: (i) demand, for which discrete choice models are used to take into account
preference heterogeneity and to model individual decisions according to the utility maximization
principle; (ii) supply, for which a bilevel optimization problem models how strategic decisions
are affected by the knowledge of the customers’ utility functions; (iii) market, for which the
interactions caused by the existence of competitors with conflicting interests are modelled as a
non-cooperative game to understand market equilibrium solutions.

Modelling demand at a disaggregate level implies that the resulting supply payoff functions are
generally non-convex. As a consequence, it is not possible to prove existence and uniqueness
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of Nash equilibria, nor to solely rely on derivative-based methods. We proposed a mixed
integer programming formulation based on the fixed-point iteration algorithm, which can be
applied to discrete games. Numerical experiments show that the MIP model can solve small-
size instances to optimality. Its applicability to larger problems depends on the quality of the
strategy set generation techniques that are employed to select potential equilibrium solutions
and best-response strategies for all competitors.

Our research is currently investigating an algorithmic approach to find equilibrium or near-
equilibrium solutions in oligopolistic markets. First, a quick heuristic such as the sequential
game with nonlinear choice probabilities and with multiple restarts could be used to explore
the solution space and identify potential equilibrium regions, as done in Adler (2001). If one
or more pure strategy Nash equilibrium solutions are found, then they are market equilibria
for the problem. Else, if a cyclic equilibrium is detected, none of the combinations of the
suppliers’ strategies yields an equilibrium solution. However, the strategies retrieved in the
cyclic equilibria could be used as restricted set of candidate best-response strategies in the
fixed-point optimization model. Then, the fixed-point optimization model could be used to find
subgame equilibria on the restricted strategy sets and to evaluate the deviation from equilibrium
of the different solutions. It is reasonable to believe that suppliers are unwilling to change their
strategies for a marginal increase in profits, if this led to a price war that would in turn affect
their later profits at a greater extent, falling into a prisoner’s dilemma-like pattern. To address
this point, we plan to look further into the economic literature on epsilon-equilibria and tacit
collusion, e.g. Radner (1980) and related research, which could enhance the applicability of our
framework to real-life markets, where perfect profit maximization behaviors and pure strategy
equilibria are unlikely to exist.

Later, our algorithmic approach will be used to study an oligopolistic market within the transport
industry. Some of the challenges to explore include: (i) at a demand level, the use of more
advanced discrete choice models, such as nested logit or latent class models, and the inclusion of
endogenous variables other than price in the utility function; (ii) at a supply level, the possibility
to offer different products or prices to different customers; (iii) at a market level, the definition
of near-equilibrium regions for real life applications.
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