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This talk is about combining machine
learning and operations research to solve
large-scale decision-making problems.

Second part: novel methodology in the
context of a railway application
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BACKGROUND AND MOTIVATION

MACHINE LEARNING (ML)

» Acquisition of knowledge by
extracting patterns from data

» Ingredients of most machine/
statistical learning algorithms: data, a
model, means to link the two - infer
values of parameters (cost function
and optimization procedure)

» Supervised learning: data consists of )
examples that are described by y — f(xa H)
certain features and a corresponding . :
l -
label (XD, y9D) i=1,....m
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BACKGROUND AND MOTIVATION

MACHINE LEARNING - EXAMPLES OF

EXTENSIVELY STUDIED PROBLEMS

» Analyzing and describing visual
content

» Machine Translation A woman is throwing a frisbee in a park.

» Important tasks in many applications

A stop sign is on a road with 2
mountain in the background.

Xu et al., Show, attend and tell: Neural
image caption generation with visual
attention, 2016. ArXiv: 1502.03044v3

(c) Emma Frejinger emma.frejinger@cirrelt.ca



mailto:emma.frejinger@cirrelt.ca

BACKGROUND AND MOTIVATION

STATISTICAL LEARNING -
DEMAND FORECASTING EXAMPLE

» Predict how demand varies over
time, alternatives to statistical time
series models

» Predict user behavior, e.g., choice
of path and choice of transport
service in a network

» Route choice in transportation

» Inverse reinforcement learning
or imitation learning in ML
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BACKGROUND AND MOTIVATION

Huge success in automating
tasks that are rather easy for
humans but hard to formalize.

WHY ALL THE SUCCESS NOW?

» Massive amount of high
quality data

» Flexible models

» Computing power
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BACKGROUND AND MOTIVATION

OPERATIONS RESEARCH

» Broad field focused on solving
complex decision-making
problems that are too hard or too
time-consuming for humans to
solve

» Non-linear continuous
optimization algorithms are an
essential ingredient of machine
learning, here we focus on discrete
optimization
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£ Home

Given a list of cities and distances
between each pair, find the shortest
route that visits each city and returns
to the original city.

hard to solve

Effective algorithms

Challenge

(1) | € Home

Challenge
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BACKGROUND AND MOTIVATION

EXAMPLE: DISCRETE OPTIMIZATION
AND ML COMBINED

» ML algorithm predicts users’ behavior
in a transport network

» OR methodology solves a decision-
making problem taking users'
reactions into account

» Pricing at certain arcs (network
pricing)

» Planning of new infrastructure
(network design / facility location)

» Control traffic flow (flow capture)
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BACKGROUND AND MOTIVATION

THE SUCCESS OF OR

» A wide range of real-word applications
rely on operations research
methodologies: scheduling, energy grid
management, vehicle routing, service
network design, fleet management, ...

» Impressive results over the past two
decades: more than 265,000x
algorithmic speedup!

» The environment is assumed to be
known perfectly in a majority of the
applications.

(c) Emma Frejinger emma.frejinger@cirrelt.ca
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BACKGROUND AND MOTIVATION

MACHINE LEARNING + DISCRETE OPTIMIZATION

ML and optimization are integrated, interplay and
conduct learning through interaction with the

environment.
Example: integrated model adapts to a changing
environment, e.g., user behavior is changing over

time

Interact

ML and optimization are integrated and interplay.

Interpla
D Examples: bilevel optimization, « hybrid » algorithms

ML is used to characterize uncertainty in the environment.
ML predictions and optimization are used in sequence.
Majority of models used in practice.

Understand

(c) Emma Frejinger emma.frejinger@cirrelt.ca
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BACKGROUND AND MOTIVATION

MACHINE LEARNING + DISCRETE OPTIMIZATION

Interplay O Example

An example of bilevel optimization
problem important to transport planning

Lower level is modelled with a
probabilistic choice model: non-linear
optimization problem with strong
combinatorial features

Dan & Marcotte (2019) on competitive facility
location

Gilbert, Marcotte, Savard (2014) on logit network
pricing

Morin, Frejinger, Gendron (2019) on flow capture
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BACKGROUND AND MOTIVATION

MACHINE LEARNING + DISCRETE OPTIMIZATION

Interplay O A view - by no means exhaustive

» ML used as a tool for approximating complex and time-consuming tasks in OR algorithms,
e.g, branching for enumerative approaches (survey by Lodi and Zarpellon, 2017)

» ML used to (heuristically) solve discrete optimization problems (survey by Bengio et al.,
2018)

» Discrete optimization for ML algorithms (e.g., Bertsimas and Shioda, 2017; Grinlick et al.,
2017)

» Learning optimization models from data
» Constrained models (Lombardi et al., 2017; Hewitt and Frejinger, 2019)

» Objective function: data-driven inverse optimization (e.g., Esfahani et al., 2017) inverse

reinforcement learning (Ng and Russell, 2000), dynamic discrete choice models (Rust,
1986)
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Predicting tactical solutions to
operational planning problems
under imperfect information

ArXiv:1807.11876v3




In brief:

Combine machine learning and discrete
optimization to solve a problem that we
could not solve with any existing
methodology.

Challenges:

Very restricted computing time budget.
v Imperfect information.




-
CONTEXT

Planning horizon and increasing level of information

Long term Medium term Short term
« strategic » « tactical » « operational »

Fully detailed solution -
implementable

:  Description of solution -

: level of detail that is relevant :

: to the tactical decision :
problem

Value of the
solution

LEVEL OF DETAIL OF SOLUTION

IN OPTIMIZATION OF
1 R P L LAY O PERATIONS intermodal.iro.umontreal.ca | Page 16
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-
CONTEXT

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information
-
1T
8 seconds to Reasonable computing time -
minutes p - .
) within the time budget for the
3 operational problem
=
-
(ZD
= Much shorter than the
E time it takes to solve the
= milli- full problem under perfect
8 seconds information
_____ SSSSS O :
:QNAJ?'ZI.:”.:)I%)E&%NOSQ intermodal.iro.umontreal.ca | Page 17
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-
CONTEXT

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information

High-precision solution
Reasonable computing time

Solve deterministic
optimization problem
mathematical programming

High-level solution
Very short computing time

Stochastic programming

Machine learning
predict the tactical solution
----- descriptions

L%?.Z,‘;{fﬂﬁ'é&%“oﬁg intermodal.iro.umontreal.ca | Page 18
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-
SOME NOTATION

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Problem instance !mperfeqt X, Eerfect | X = [X,,X,]
information : information
Solution y*(Xa) Deterministic v (x) = arg min C(x,y)
a : problem yeY(x)

Tactical solution ok _ % (x
description y* = g(y*(x))

IN OPTIMIZATION OF
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-
APPLICATION - LOAD PLANNING

Planning horizon and increasing level of information

Medium term Short term
« tactical » « operational »
Capacity management, Load planning for
e.g., bookings double-stack trains
Request Railcar Accepted

n supply ~ bookings ok
E .: ' oy = ’ O . fa :

Accept /reject
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-
APPLICATION - LOAD PLANNING

Problem
Instance

>

|

™
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y*(x) = arg min C(X,Yy)
yEY(X)

TV N
I N .
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-
APPLICATION - LOAD PLANNING

» Containers have different
characteristics, for example:

» Size =

» Weight

» The loading (operational problem) of
the containers onto railcars crucially
depends on weight

» Weight is unknown at the tactical
level
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-
IDEA IN BRIEF

» We know how to solve the deterministic problem - let’s
use that!

» Generate a lot of data and pretend that we have
perfect information - solve the discrete optimization
problem with an existing solver

» Let machine learning take care of the uncertain part:
hide the information that is not available at prediction
time - find best possible prediction of y*

y* (Xa) — f(Xa} 9)

|

State-of-the-art ML model Parameters
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METHODOLOGY

= Two-stage stochastic programming formulation

o

% Optimal prediction conditional on x,, expectation over distribution of x,

o Optimal solution to deterministic problem for given x =[x, X,]
Problem instances and solutions Machine learning

,,g (perfect information) training, validation, test data

)]

IN OPTIMIZATICN OF
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METHODOLOGY

E _

@ Y (xa)€EY(xa)

o

O \

o Yy (Xa, Xy) = arg
Problem instances and solutions

..g (perfect information)

o

IN OPTIMIZATION OF
CN CHAIR oy rer ey e

Y (%a) :=arg inf Dy {[[y(%a) = 9(y" (%a, xu))|| | Xa}

inf  C(xa,Xyu,Yy)

yEYV(Xa,Xu)

Machine learning
training, validation, test data

intermodal.iro.umontreal.ca | Page 25
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METHODOLOGY

S v (x,) := arg inf Dy
o (%a) y(xa)EV(xa) A\
Q e,
o
= arl

. yEY (Xa,Xu)

Problem instances and solutions Machine learning
8 (perfect information) training, validation/test data
. (x®O,yD) i=1,..m (XD § Oy i=T1,..,m
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METHODOLOGY

5 y"(xa) = arg
)
o
L
o
Problem instances and solutions Machine learning 4
,,g (perfect information) training, validatiop/test data
a

| (x0,y0) i=1,..m
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-
METHODOLOGY

» Data
» Historically observed instances and their solutions
» Purpose: « mimic » behaviour in such data

» Our approach: generate data by sampling problem instances and computing
the corresponding solutions using existing optimization model and solver

» Purpose: generalization over the domain of X
» The input structure is governed by the information available at prediction time

» The output structure is governed by the choice of solution description and can
be of fixed or variable size

» Model architecture depends on input and output structures and on constraints
linking the two
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-
RELATED LITERATURE

» Closest to our work are those based on supervised learning
but they focus on deterministic problems

» Fischetti and Fraccaro (2017) predict optimal objective
function value

» Vinyals et al. (2015) define pointer networks to solve a class
of discrete optimization problems, constraints are imposed
by changing the NMT model architecture

» Nair et al. (2017) propose a reinforcement learning algorithm
combined with ILP solver for a two-stage binary stochastic
program (unconstrained binary decisions)

:;NN?.E.R:'LI%;’E&OTTOSE intermodal.iro.umontreal.ca | Page 29
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-
DATA GENERATION

» Random sampling of container/railcar types and container weights

Description # of containers # of platforms

Simple ILP [1,150] [1,50]

More containers than A

(excess demand) [151,300] [1,50]
More platforms than A 11,150] 151,100]
(excess supply)
Larger and harder [151,300] [51,100]

_IN OPTIMIZATICN OF , .
1 R P L LAY O PERATIONS intermodal.iro.umontreal.ca | Page 30
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-
INPUT-OUTPUT

Input: problem instance Output: tactical solution
2 container types: 40 and 53 ft

10 railcar types: 10 most numerous in
the North American fleet

:: e O
O
T
40 ft :I— . S
e O :
40 ft :
o Y e LR EE LR EEEEE R
53 ft
o o 1
:ﬁ ® o e o
'S
v G I I e
40 ft B ' e T —
S 1 1 B B I
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INPUT-OUTPUT

Input: problem instance Output: tactical solution
2 container types: 40 and 53 ft

10 railcar types: 10 most numerous in
the North American fleet

i TACTICAL 1:
; MULTILAYER PERCEPTRON /
; FEED-FORWARD NETWORK
40 ft :
o o :
40 ft :
° © :
53 ft i
o ® 1
i TACTICAL 2-
. NEURAL MACHINE TRANSLATION (NMT) MODEL
40 ft B B !
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-
TACTICAL 1: MULTILAYER PERCEPTRON

Input Output
Fixed-size vector Fixed-size vector
vk
X, y

Nb of assignable - Nb of containers of each
containers of each type type in the solution

Nb of of assignable B B Nb of railcars of each

railcars of each type type in the solution

_IN OPTIMIZATICN OF
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-
TACTICAL 1: MULTILAYER PERCEPTRON

» Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear
units (ReLU) per layer (hyper parameters)

» Classification / Regression (linear units in output layer and rounding to the
nearest integer)
» Training and validation
» Minimization of neg. likelihood function / sum of absolute errors

» Mini-batch stochastic gradient descent and learning rate adaptation by the
adaptive moment estimation (Adam) method

» Regularization: early stopping
» Random search for hyper parameter selection

» Mean Absolute Error (MAE) over slots and containers

:;NN?.E.R:'LI%;’E&OTTOSE intermodal.iro.umontreal.ca | Page 34
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-
TACTICAL 1: MULTILAYER PERCEPTRON

» Average performance of the MLP model is very good

» MAE of only 2.1 containers/slots for classes A, B and C (up to
100 platforms and 300 containers) with very small standard
deviation (0.01)

» MLP results are considerably better than benchmarks

» The marginal value of using 100 times more observations is fairly
small: modest increase in MAE from 0.985 to 1.304 on class A
iInstances)

» Prediction times are negligible, milliseconds or less and with very
little variation
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TACTICAL 1: MULTILAYER PERCEPTRON

Mean Absolute Errors

100
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-
TACTICAL 1: MULTILAYER PERCEPTRON

» The models trained and validated on simpler instances (A, B and
C) generalize well to harder instances (D)

» MAE of 2.85 (training on class A)

» MAE of 0.32 (training on classes A, B and C)

» Important variability across models with different hyper
parameters when only trained on class A (MAE varies between
0.74 and 9.05)

» Numerical analysis of feasibility: there exists a feasible
operational solution for a given predicted tactical solution in 96.6%
of the instances (the share is much lower for the benchmarks)
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-
TACTICAL 1: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA)
of the two stage stochastic program?

» Class A instances

» The average absolute error of the SAA solution is similar to
that of the ML algorithm: 0.82 compared to 0.985

» The computing times for SAA vary between 1 second to 4
minutes with an average of 1 minute
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-
TACTICAL 2: NMT MODEL

PLEASE CONTACT EMMA FREJINGER IF YOU'RE INTERESTED IN THIS TOPIC.
THESE SLIDES ARE LEFT OUT FROM THE PUBLICLY SHARED VERSION OF THE PRESENTATION BECAUSE THE
RESULTS HAVE NOT BEEN PUBLISHED.
EMMA.FREJINGER@CIRRELT.CA




Conclusion and perspectives




Thank you!
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