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Abstract

The growing number of people living in cities results in rising mobility demand, and as a
consequence, the limited capacity of traffic networks gets more stressed. Hence, congested
network links are causing travel delays and negative impacts on the environment, postulating for
a methodology to overcome this challenge. Considering the broad range of traffic management
systems, congestion pricing is a very effective tool to tackle today’s cities traffic problems.
Different strategies are available in literature or even applied in real-world that show a positive
effect on the traffic situation.
This paper proposes a framework design that allows the testing of pricing policies and to
evaluate their performance in alleviating congestion. The study implements a multi-region
urban network, where the urban regions are considered as homogeneous and replicated with a
representative Macroscopic Fundamental Diagram (MFD). To assess the impact that different
pricing policies may have on traffic behavior, a route choice algorithm is utilized and a concept for
the computation of the dynamic user equilibrium, as well as the system optimum, are proposed.
A case study is presented, where the modeling approach is applied to the heterogeneous road
traffic network of the city of Zurich, Switzerland.

Keywords
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Introduction

The fact that more and more people are living in cities puts significant pressure on the mobility
services of urban regions. One major challenge of today’s transportation systems is the mitigation
of congestion. To overcome this challenge, many traffic management approaches have been
proposed in the past. One well-known system is perimeter control, allowing to reduce the
user delay in a protected region significantly by controlling traffic lights at the region border
(Geroliminis et al. (2013); Keyvan-Ekbatania et al. (2012)). To maintain the system at an
optimal point the properties of the Macroscopic Fundamental Diagram (MFD) are used, showing
that operating at the critical density, allows serving the corresponding maximal traffic volume.
Nevertheless, this approach is not considering external effects that are especially present when
focusing on car traffic. Air pollution, noise, accidents, congestion, and space occupation are
examples of costs that the road user is not charged for. Hence, this results in negative effects on
the performance of a traffic system, the environment and the economy (Hansen (2018)).
To reduce the user delay but also ensure the internalization of external effects, congestion pricing
is a well-known approach, where users are charged for using the road network. This can either be
implemented by HOT (High-Occupancy Toll)-lanes, where a vehicle has to be certainly occupied
or the road user is willing to pay for the lane usage. Secondly, cordon-based congestion pricing
approaches are available that charge the user for entering a protected region. Both methodologies
are leading to a reduction in the Total Time Traveled (TTT) and recent research shows that the
method is beneficial for mitigating traffic congestion. Nevertheless, it is challenging to compare
different pricing policies and provide a guideline for recommended charges and potential system
improvements.
In the proposed work, we focus on a multi-region-network based on the work from Sirmatel
and Geroliminis (2018). The defined regions are considered as homogeneous with different
characteristics (size, capacity, average trip length) in the heterogeneous traffic network of the City
of Zurich. Every region is defined by a well-defined MFD with a novel method from Ambühl
et al. (2018). By using a route guidance algorithm that considers the splitting rates of users
to different route possibilities, the impact of different pricing policies on the traffic behavior,
as well as on the route choice can be determined. The performance of this novel model is
shown by the computation of the Dynamic User Equilibrium (DUE) and the Dynamic System
Optimum (DSO). By introducing different pricing policies we can determine and compare the
improvements towards the DSO. To provide a baseline scenario for the testing of congestion
pricing strategies, demand patterns are found by solving an optimization problem. A case study
is presented that applies the methodology to a modeling scenario of the city of Zurich.
The remainder of this paper is organized as follows: Section 1 introduces the concept of
congestion pricing and the current state-of-the-art research. The methodology, i.e. the modeling





          

of the simulation plant, the MFDs, and the determination of the demand patterns are described
in Section 2. The case study is presented in Section 3 with determined results and an outline of
the determination of the DUE and DSO. The paper closes with a conclusion, as well as future
research ideas, in Section 4.

1 Background and Motivation

With an increasing mobility demand over the last centuries, traffic congestion rose and with
that the necessity of trying to eliminate this problem. The past has shown that traffic planners
have tried to tackle this problem with the extension of the existing network. Nevertheless, it has
been proven that the Vehicle Kilometers Traveled (VKT) and the lane kilometers of a network
increase proportionality. Logically, such investments are not solving congestion problems. In
addition, individual transportation induces several negative effects on the social, economic and
environmental system that are also known as external effects. Users are not charged for these
impacts and therefore the efficient consumption level of transportation will always be lower than
the actual one, resulting in external effects, congestion, and consequently, time loss (Eliasson
(2017)).
Congestion pricing is a traffic management approach to address the problem with the internal-
ization of the external effects by charging users for the usage of road infrastructure. This can
be either implemented with HOV-lanes or with the definition of a protected area that has gates
to enter, where a tool needs to be paid. By applying this concept, a road user is charged for
the time loss that is caused to others. The approaches for charging road users differ in terms of
(a) the pricing infrastructure (HOV, protected area, etc.), (b) the pricing policy (time ranges of
charging, exceptions for residents, etc.), and (c) the methodology used for cost determination
(time-based, distance-based, joint-charging approaches, etc.). Consequently, it can be stated
that the city structure is from great importance, when designing congestion pricing. This is
supported by study from Börjesson (2018) that investigates in the performance of congestion
pricing in Sweden. Eliasson (2017) lists several examples of systems in operation that support
the variety of approaches. Since 2016, vehicles entering the city center of London (UK) need
to pay a fixed price, regardless the traffic situation. Stockholm (Sweden) is varying the price,
dependent on peak-hours and off-peak-hour entrances. In addition, entering the center during
the night and on weekends is free of charge. Gothenburg (Sweden) is charging users during any
one-hour period with a varied price that is dependent on the time of day.
The three approaches share the property, that prices are not continuously evaluated or even
changing. This is different in Singapore, where users are charged per trip but the prices are
revised four times a year based on the deviation of speed measurements from set targets.





          

In the last years, several research towards a more smarter and dynamic congestion pricing was
accomplished. A pricing policy where the price is changed based on traffic density measurements
and road popularity is proposed by Soylemezgiller et al. (2013). Nevertheless, this approach
requires RFID-based toll booths at every junction in an urban region. Kachroo et al. (2017)
shows an optimal control law with the Hamilton Jacobi bellman equation. Nevertheless, both
approaches are independent from aggregated traffic measurements (e.g. an MFD) and Kachroo
et al. (2017) is proposing the final toll calculation with three static parameters that need to be
adjusted by the operator. To bridge the concept of MFDs and the derivation of the optimal
toll, Zheng et al. (2012) shows a framework that tries to maintain a network at the optimal traffic
density and also to cover route choice with an agent-based simulation model. This work was
further extended with a time-dependent pricing scheme in Zheng et al. (2016). A comparison of
distance-, time-, and delay-tolls are shown in Gu et al. (2018). Furthermore, the study proposes
two new concepts named the Joint Distance and Time Toll (JDTT), and the Joint Distance and
Delay Toll (JDDT), respectively.
Because of the high computational complexity, the presented research is mostly based on static
traffic assignment methods. The concept of Dynamic Traffic Assignment (DTA) is utilized
for predicting travel times more accurate than static traffic assignment methods. Ekström et al.

(2016) is introducing a surrogate-based optimization approach for the computation of the DUE
and DSO. We will also aim for the computation of these equilibria to evaluate the performance
of congestion pricing (an outline is given in Section 3.4).

2 Methodology

2.1 Macroscopic Fundamental Diagram modeling

Previous shown work, such as Sirmatel and Geroliminis (2018), are using mathematical relation-
ships for modeling an MFD that is represented as an polynomial of the degree n (e.g. in Sirmatel
and Geroliminis (2018) the approximation takes the form of G(n(t)) = (an3 + bn2 + cn)/L̄, where
the coefficients a, b, c are derived from measurement data). Furthermore, other approximations
such as an exponential or multi-regime linear function are used. However, the function parame-
ters lack physical meaning and might introduce problems with the application of optimization
procedures. Instead of assuming a functional relationship, another approach is to estimate an
MFD from measurement data. Nevertheless, the quality of data or difficulties in data acquisition
might not lead to reasonable approximations (Ambühl et al. (2018)). For the modeling of the
function G(·) the novel procedure developed by Ambühl et al. (2018) is used. The work presents





          

an approximation of the trapezoidal diagram with the properties of smoothness, concavity, and
continuity defined by:

q(k) = −λ ln
(

exp
(
−

ak
λ

)
+ exp

(
−

qout

λ

)
+ exp

(
−

(κ − k)b
λ

))
. (1)

The function q(·) is the estimated outflow (veh/s) with respect to the input density k (veh/m).qout

is considered as the maximal outflow (capacity) in (veh/s), κ the jam-density in (veh/m), a and
b as the slope of the free-flow and congestion regime, respectively, and λ as the smoothing
parameter.

2.2 Urban multi-region modeling

A multi-region city network partitioned into homogeneous regions R is introduced, defined by
R = {1, 2, . . . ,K}, where K is the number of regions. Every region Ri, where i = {1, 2, . . . ,R}
is the index of the region, is modeled with a well-defined MFD, represented by the function
G(NI(t)), where NI(t) is the accumulation of a region Ri at time step t. Consequently, the
dynamics equations can be defined as follows:

dNII(t)
dt

= QII(t) − MII(t) +
∑
H∈Ni

MHII(t), (2)

dNIJ(t)
dt

= QIJ(t) −
∑
H∈NI

MIHJ(t) +
∑

H∈NI ;H,J

MHIJ(t), (3)

where the indices I ∈ R, H ∈ NI and J ∈ R are representing the origin region, the stop-over
region, and the destination region, respectively. NI is containing all regions that are neighbors
of I. The internal demand within one region is defined by QII(t). Demands with the origin I

and destination J are introduced by QIJ(t). Flows are stated by the functions MII(t) and MIHJ(t)
representing the internal flows in a region and the transfer flows from region I via H to J,





          

respectively defined as follows:

MII(t) =
NII(t)
NI(t)

G(NI(t)), (4)

MIHJ(t) = θIHJ(t)
NIJ(t)
NI(t)

G(NI(t)). (5)

The functions NII(t) and NIJ(t) are introducing the accumulation from region I to I and J,
respectively. The function θIHJ(t) represents the route choice at t, where for the computation
an implementation of a k-shortest path algorithm is used. The sequence of regions a user can
choose in the proposed model is not arbitrary. If the indices IHJ are parametrized with I = J,
paths are restricted (e.g. IHJ = 131). This assumption denies unrealistic path choices and
improves the quality of the model. For regulating the traffic with pricing, θIHJ(t) is influenced by
a proposed function that is dependent on the application of specified pricing policy and the given
accumulation at the time step t. Please note that the transfer flows need to be restricted by (6)
stating that the minimum of the incoming transfer flow or the maximal capacity of the region is
considered, providing a network region from accepting incoming flows that are exceeding the
capacity limit. The latter is modeled with the function CIHJ(NH(t)).

˜MIHJ(t) = min
(
CIHJ(NH(t)), θIHJ(t)

NIJ(t)
NI(t)

G(NI(t))
)
. (6)

2.3 Demand pattern determination

The simulation plant for the multi-region modeling is designed to receive the demand patterns
as trapezoids. A trapezoid is defined as a symmetric shape by specifying the rising time tq,r

(s), the falling time tq, f (s) (where tq,r = tq, f ), the time the demand remains constant tq,c (s),
and the demand magnitude Qt in (veh/sec). Often these parameters are found by generating
random numbers that satisfy the given application. In this work, an optimization procedure
from Kosmatopoulos and Kouvelas (2009) is utilized to find the parameters tq,r, tq, f , tq,c, and
Qt, producing a desired simulation scenario (e.g two regions with and two regions without





          

congestion). By setting a target on the MFD per region, different scenarios for testing congestion
pricing strategies can be found efficiently.

3 Case Study

This section presents a case study, where the modeling is based on an example of the city
of Zurich. First, the MFD design and the corresponding parameters are introduced. In Sub-
section 3.2, the derived demand patterns are shown, followed by the simulation output in
Subsection 3.3.

3.1 MFD Design

We base our modeling on a region design of the city of Zurich. The regions are derived from
analyzing the traffic main arteries of Zurich, the geographical reference of the available Loop
Detectors (LD), and with respect to providing a good baseline for congestion pricing scenarios
(Figure 1).

The city center (R1) is considered with an area of 1.5 (km2) and holds 245 available LDs.
Consequently, the parameters for the MFD design are assumed with reasonable values as
follows: Jam accumulation N1, jam = 5000 (veh), average trip length L̄1 = 1000 (m), and a
network length of 30 lane kilometers. R2 − R4 are designed as the border regions of the city
center with an area of 5.0 (km2), each. The number of detectors for region R2, R3, and R4 are
157, 211, and 198, respectively. The MFD for the border regions is designed with N2,3,4, jam =

8000 (veh), ¯L2,3,4 = 2000 (m) and a network length of 48 lane kilometers, respectively. Hence,
the network is designed for a storage capacity of 29000 vehicles. Note that in Figure 1 the
connection between region R2 and R4 is highlighted separately. Considering the model shown in
Figure 2, we are proposing a four region network, where the region Ri=1 is representing the city
center. The input parameters to determine the presented MFDs in Figure 2 with (1) are listed
in Table 1. Note that the parameters a and b are the slopes of the free-flow and the congested
regime of the outflow MFDs, and do not have a physical meaning.





          

_̂

R2
 A=5km2 
nDT=157

R3
 A=5km2 
nDT=211

R4
 A=5km2 
nDT=198

R1
 A=1,5km2 

nDT=245

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,
FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri
Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and
the GIS User Community

Sources: Esri, HERE, Garmin,
Intermap, increment P Corp., GEBCO,
USGS, FAO, NPS, NRCAN,
GeoBase, IGN, Kadaster NL,

0 0,2 0,40,1
Kilometers

±

Figure 1: Region design of the city of Zurich. Every region is stated with an id Ri, the area A
and the number of available LDs nDT .

Table 1: Input parameters for MFD approximation.

Parameter Unit City Center R1 Border Regions R2 - R4

a [m/s] 135.00 219.38
qout [veh/s] 4.50 6.00
κ [veh/m] 0.16 0.16
b [m/s] 48.21 61.28
λ [-] 0.50 0.60





          

R2

R3 R4

R1

(a) Region model
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(b) MFD designs.

Figure 2: The multi-region-network model and the corresponding MFD designs. a) The region
R1 is modeled as the city center and treated as a protected region with pricing (indicated
by the double lines), R2 − R4 are representing the boundaries to the center. b) The
MFDs are designed according to assumptions related to the City of Zurich (region
size, partitioning, etc.) and one can note that R2 − R4 are modeled as larger regions
with greater capacity.

3.2 Demand determination

To provide a relevant peak-hour simulation scenario for congestion pricing, representative
demand patterns need to be derived. To utilize the optimization procedure used, for every region
a target value is defined (Figure 3).

R1 and R2 are representing a traffic situation in the congested regime, whereas R3 is close to
the optimal traffic density and R4 operates in the non-congested regime. The derived demand
patterns are depicted in Figure 4.

It is depicted that the demands from R2 to R1, R3, and R4 have the highest magnitudes, followed
by the demand of the city center R1 to the other regions. The lowest magnitudes are shown in
R3.

3.3 Simulation output

The found demand patterns are utilized as a simulation input for the baseline scenario. The
configuration of the simulation plant is defined with a time step t of 20 (s) and the simulation
length of 595 time steps.
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Figure 3: Target accumulation for demand determination for R1 - R4.
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Figure 4: Traffic demand per region and pre-defined simulation horizon; configuration is for a
4X4 OD matrix, where i specifies to the origin and j the destination.

Figure 5 demonstrates the MFD functions G(·) and the simulation output data resulting from
the demand scenario. The data points (in red) are representing the output, where every sample
represent the relationship between the outflow (veh/s) and the accumulation (veh) for every t. It
can be shown that the defined targets from Figure 3 are accurately representing the desired MFD
regime.

Consequently, the accumulations outputs can be shown from origin i to destination j, as well as
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Figure 5: MFD functions with the corresponding simulation output, representing the relationship
between outflow (veh/s) and the accumulation (veh) for every region.

Figure 6: Accumulation (veh) over time in (s) per region, where i specifies to the origin and j
the destination.n1-n4 are representing the accumulation summation per region

the summation per region n1, n2, n3 and n4 (Figure 6).

It is shown that R1 and R2 are exceeding the critical accumulation (dashed lines), reaching the
congested regime. However, R3 and R4 are not reaching the critical density.





          

3.4 Dynamic equilibrium and optimum determination

Our proposed model uses route guidance and the optimal splitting rates θIHJ(t) are calculated for
every time step of a performed rolling horizon optimization. This methodology implies, that the
route of a user is not fixed over the simulation horizon and with that, the TTT varies compared to
a pre-defined and fixed route. Hence, the static UE and SO are not sufficient for this problem and
the DUE and DSO need to be determined. The DUE seeks for the Wardropian user equilibrium
which is representing a state where no user can improve the experienced user travel time (UTT)
by switching route. Otherwise, the DSO is the minimization of the total system travel time
(STT), where every user would be better off. Nevertheless, this implies full knowledge about the
route information and also full compliance of the users. The DSO problem can be formulated as
an optimization problem as follows:

minimize
∑
l∈L

∫ tc

0
NI(t)dt. (7)

where xl is representing the equilibrium flow on a path l ∈ L, where L holds all the possible
paths for an origin I to a destination J in the proposed network. tc can be defined as the choice
time horizon of a users route decision and be set equal to the simulation time horizon. The
function NI(t) represents again the accumulation in the region I. The DUE problem aims for
minimization of the travel times per path for every user in the system. As this constitutes a
non-linear problem and high computation costs, we are working on a methodology to reduce its
relationship to a convex function (solvable with linear programming).
Both optimization problems must be solved with respect to the dynamics in (2), (3), non-
negative, and capacity constraints. After the computation of the system states DUE and DSO
as a reference, different pricing strategies can be applied and quantitative feedback about the
system improvement can be given. The closer the model is operating at the DSO, the better
the performance and with that the lower the TTT for all users in the network gets. Hence,
the provided modeling allows the comparison of different pricing strategies and the evaluation
of their performance in the system. In a detailed case study, several novel pricing functions
J are tested and different pricing strategy combinations are tested and evaluated numerically.
The MFD control in the border regions, as well as in the city center is providing feedback for
dynamic pricing on corridor entrances. This approach allows us to test and evaluate current
pricing strategies and to develop novel and improved methodologies. The results lead us to a
traffic network with a minimized TTT and with that mitigated negative environment and social
impacts.





          

4 Future research and conclusion

This paper presents a generic framework for the evaluation of congestion pricing policies. With
the novel methodology used for MFDs design that allows a smooth, concave and continuous
approximation of the trapezoidal diagram, a beneficial baseline for solving the equilibrium
and optimum optimization problems is provided. To describe the dynamics between urban
regions, a well-known multi-region model approach is utilized. The demand patterns, used as a
simulation input, are determined by solving an optimization problem with defined targets on the
corresponding region MFDs.
The presented case study shows a region design of the city of Zurich. Reasonable parameters
were assumed by utilizing the traffic main arteries and the geographical reference of the installed
LDs. The derived parameters from the region design, as well as from the demand optimization
problem, are used in the MFD design and the simulation model, respectively. The outputs from
the simulation plant represent a reasonable baseline scenario for the evaluation, improvement
and potential re-design of congestion pricing policies. Furthermore, by using a route guidance
algorithm that considers the splitting rates of users to different route possibilities, the impact of
different pricing policies on the traffic behavior, as well as on the route choice can be determined.
In future research, the performance of pricing algorithms is shown by the computation of the
Dynamic User Equilibrium (DUE) and the Dynamic System Optimum (DSO). By introducing
different performance indicators, we can determine and compare the improvements towards the
DSO.
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