
Research Collection

Working Paper

mixl : An open-source R package for estimating complex choice
models on large datasets

Author(s):
Molloy, Joseph; Schmid, Basil; Becker, Felix

Publication Date:
2019

Permanent Link:
https://doi.org/10.3929/ethz-b-000334289

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000334289
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

mixl : An open-source R package for estimating

complex choice models on large datasets

Joseph Molloy, Basil Schmid, Felix Becker

IVT ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland

Abstract

This paper introduces mixl , a new R package for the estimation of advanced
choice models. The estimation of such models typically relies on simulation
methods with a large number of random draws to obtain stable results. mixl
uses inherent properties of the loglikelihood problem structure to greatly re-
duce both the memory usage and runtime of the estimation procedure for
specific types of mixed multinomial logit models. Functions for prediction
and posterior analysis are included. Parallel computing is also supported,
with near linear speedups observed on up to 24 cores. mixl is directly ac-
cessible from R, and easy to use. This paper presents the architecture and
performance of the package, details its use, and presents some results using
real world data and models.

Keywords: Multinomial logit, mixed logit, choice modelling, R, hybrid
choice, estimation

1. Introduction

Choice modelling is an important tool in many fields, including trans-
portation, marketing, behavioural psychology, and economics. For example
in a transportation context, individuals must make many repeated decisions,
whether to travel or not, which mode of transport to take, and which route
or transit line to travel on. All of these decisions involve a choice of one
alternative from multiple options: a discrete choice. Since the 1970’s multi-
nomial logit models have applied random utility theory to model how decision
makers compare and evaluate alternatives (McFadden, 1974). However, for a
closed-form solution some mathematical constraints of the decision need to be
accepted. However, these restrictions, although computationally convenient,

1

limit the realism of the models. As such, increasingly more complex models
and model families have been proposed, including Mixed MNL (McFadden
and Train, 2000), Generalized Extreme Value (McFadden, 1980) and Hybrid
Choice Models (HCM) (Walker and Ben-Akiva, 2001; Ben-Akiva et al., 2002).
These models relax the behavioural restrictions on the classic MNL model,
but in the process, require simulation methods to estimate.

In particular, mixed MNL and hybrid choice models are increasingly being
used to explain human behaviour (e.g. Schmid and Axhausen, 2018). Addi-
tionally, the size of the datasets that researchers are working with are also
becoming larger. Hence, it is now common that complex model formulations
can take many hours or even days or weeks to estimate when using simula-
tion methods. There are widely used software packages for estimating such
models, such as biogeme (Bierlaire, 2016) and ALOGIT. Ideally, the model
estimation process integrates seamlessly with the workflow of the modeller,
which is commonly the R language and Rstudio. Publicly available R soft-
ware packages for choice model estimation are limited both in functionality
and by their reliance on the R language, making them both inefficient and
unable to handle large problems when using simulation. As such, there is a
need for an open-source R software that can estimate complex choice models
on large datasets.

This paper presents a new R package, mixl , for the estimation of multi-
nomial logit models (MNL), mixed MNL models (MMNL) and hybrid choice
models (HCM), arguably currently the three most common model structures.
In Section 2.1, the necessary background on log-likelihood computation and
estimation, including the available software for doing so, is covered. Section
3 describes the software architecture and design decisions behind the mixl
package. Section 5 explains how to use the package, and the final section
presents an application of the software.

2. Background

2.1. (Simulated) Maximum loglikelihood estimation

In this section the formulation of the log-likelihood calculation are pre-
sented. Let us assume that each decision maker n is trying to maximize their
utility in the form Unj = Vnj + εnj where Vnj is the observed utility and εnj
represents the unobserved factors (Ben-Akiva and Lerman, 1987). This leads
to the following succinct closed formed expression for the choice probability
(Train, 2009):

2

Pnit =
exp(xnitβ)∑
j exp(xnjtβ)

(1)

where n is the decision maker, i the chosen alternative in choice scenario
t, and Tn is the number of choice tasks for individual n. β represents the
model parameters to be estimated, and Xijt the vector of observed variables.
In the mixed case with panel data, the formulation is extended with the
distributions f(β):

Ln =

∫ Tn∏
t

Pnitf(β|θ)dβ (2)

where θ are the parameters that describe the density of β. These mixed
models can be formulated in several ways, with two main derivations us-
ing random coefficients and/or error components. They vary over decision
makers with the density f(β), which is, as mentioned, a function of the pa-
rameters θ. As such, in a mixed model, the parameters β vary over the
population.

The calculation of the likelihood for a simple MNL model is straightfor-
ward. The likelihood is simply the product of the chosen probabilities for
each individual. For panel data, the logs of the probabilities are summed up
over all observations for each individual. To calculate the probabilities in a
mixed model, R values βr are drawn from f(β|θ) and used to calculate the
likelihood. In equation 1, β is hence replaced by βr to calculate P r

nit. The
simulated probability P̂n for individual n is given by the average over all R
draws, and the simulated log-likelihood (SLL) for the sample follows:

P̂n =
1

R

R∑
r

Tn∏
t

P r
nit (3)

L̂L =
∑
n

ln
(
P̂n

)
(4)

2.2. Maximum likelihood estimation

The process of estimating the optimal value of the parameters β′ is called
maximum likelihood estimation (MLE), or maximum simulated likelihood
estimation (MSLE). In this process, an optimization routine tries to find
the set of parameters that give the maximum log-likelihood by repeatedly

3

calculating the log-likelihood with different β′ until the process converges.
To decide which betas to try next, the routine needs the derivatives of f(β′).
The most common approach, when an analytical gradient is not available is
to calculate a numerical gradient:

f ′(β′) =
f(β′ −∆) + f(β′ + ∆)

2∆
(5)

To calculate the gradient at each optimization step, the objective func-
tion, namely the log-likelihood, needs to calculated 2k + 1 times, where k is
the number of free parameters to be estimated. However, it is worth noting
that the only parameter to f(β′) that ever changes is β′ itself.

2.3. Overview of available choice modelling software

There is a wide variety of software available for choice model estimation,
including but not limited to biogeme (Bierlaire, 2016), the mlogit package for
R (Hasan et al., 2014), ALOGIT (ALOGIT, 2016), and NLOGIT (Greene,
2002). Each of these packages handle various model types and mixed models.
However, three of the four do not fit in with the work-flow of many researchers
and modellers, namely being able to work completely in R, and the second
two packages are proprietary, each with their own unique syntax. Table 2.3
summarizes the attributes of the packages.

Arguably the leading open source software for discrete choice modeling
is biogeme. pythonBiogeme can estimate an extremely wide range of para-
metric models. It has been under development for many years and is robust
and stable software. The user can specify arbitrary utility functions and
the likelihood formulation. Additionally, it takes advantage of both compi-
lation to C++ and automatic derivation to achieve excellent performance.
However, its incredible flexibility comes with a challenging learning curve.
Additionally, as stand-alone software, it is not yet interfacable from R. One
disadvantage of biogeme is the need to prepare the data in a specific format,
which is prone to errors.

In the R universe, the mlogit package provides the most accessible tools
for working with MNL models. It also supports mixed logit, but struggles
with larger problem sizes. The mnlogit package provides significant speed
improvements over mlogit by optimizing the calculation of the Hessian matrix
and using the Newton-Rhapson method for MSLE. However, Nocedal and
Wright (2000) observed that quasi-Newton methods such as BFGS perform
better on larger MSLE problems. Additionally, the mnlogit package does

4

not support mixed models, and the utility function is only allowed to have
linear-in-parameter specifications.

Furthermore, both these R packages are restricted by their reliance on the
R formula package and syntax for specifying the utility function. For more
complicated models with many alternatives or latent variables, this syntax is
at best cumbersome, and sometimes insufficient. Also, mnlogit also does not
support random coefficients. Both R packages do not support hybrid choice
or other more advanced model formulations.

The two most well known proprietary packages, ALOGIT and NLOGIT,
are well established, but are neither open-source, nor freely available to re-
searchers.

Open-source R Mixed models HCM Large problems

biogeme yes yes yes yes
R mlogit yes yes yes
R mnlogit yes yes yes
ALOGIT yes yes
NLOGIT yes yes

Table 1: Comparison of main software packages for multinomial logit modelling

2.4. Limitations and potentials of the R language

The open-source statistical software R is an incredibly powerful and pop-
ular platform for data processing, analysis and visualization. However, it is
well known for its liberal use of memory, and sometimes unwieldy syntax.
A particular performance bottleneck in R is iteration. for loops have a sig-
nificant overhead in the R language. A such, for many common operations,
functions available in R and its packages are written in the programming
language C++ for better performance, or ‘vectorized’ to work on vectors or
matrices to avoid R-based iteration.

The Rcpp package (Eddelbuettel and Francois, 2011) is most commonly
used to improve the performance of R scripts by rewriting critical functions
in C++. Functions written in Rcpp accept and return R datatypes such
as Vectors and Matrices. Code written in C++ and called from R is often
many times faster that the equivalent R code. However, C++ code must
be compiled before execution, either when the package is created, or inside

5

the script itself, in which case the user requires a software compiler on their
machine.

3. Software Architecture

In section 2.2 it was noted that while the utility function must be calcu-
lated many times during the MSLE process, all the data used by the function
except the parameters to be estimated do not change. Furthermore, each
observation can be seen as independent from a calculation perspective. For
every observation, the utility of each alternative is calculated. From there the
log of the probability of the chosen alternative is simple to calculate, which
are then summed over each individual for repeated observations. Since this
operation is associative, it also doesn’t matter in which order the observations
are processed.

This fact is exploited to drastically reduce the memory that the package
uses during estimation. Instead of storing the log-probability results for
every single observation, a matrix P of size n x R where n is the number of
individuals and R is the number of draws used. For datasets with a large
panel structure, this saves a significant amount of memory (a factor equal to
the average number of observations per individual).

However, this requires using iteration constructs rather than vectorized
linear algebra operations, as the datasets are of different sizes. As mentioned
in Section 2.4, this results in a debilitating performance bottleneck in the
R language. The solution is to code the log-likelihood function in C++.
However, it then follows that f(β′) must also be written and compiled in
C++.

In an effort to avoid this, the package includes a pre-compiler that takes
a model specification written in plain text, and converts it to a C++ utility
function callable from R and optimisation routines. Section 4.1 details how
specifications need to be written. The pre-compiler validates the specification
against the dataset to check that all variables are present, and automatically
identifies model properties such as mixed effects and hybrid choice compo-
nents. mixl detect errors in the model specification and reports them to the
user.

3.1. Parallelization

Since Pni is calculated for each observation separately, the calculation of
the log-likelihood is an embarrassingly parallel problem which can be handled

6

efficiently using data parallelism. While there are packages to perform data
parallelism in R, for example parallel and foreach, they include significant
communication overheads as new processes are spawned. Since in mixl the
log-likelihood function is implemented in C++, we can take advantage of the
openMP (Chapman and Massaioli, 2005) framework to efficiently parallelize
the for-loop over observations. Since all data except the intermediate utilities
of each alternative are shared between all cores, no copying of the data across
cores is needed to run the log-likelihood function in parallel. Compiling with
the openMP framework even provides a performance boost on a single core,
due to certain optimizations the framework enables in the compiler.

4. Using the mixl package

4.1. Syntax

To aid the specification of models and improve error reporting to the
modeller, a small amount of syntax is required:

• Variables from the dataset must be prefixed with a $

• Coefficients with a @

• Every statement must end with a ;

• Intermediate variables that are calculated dont get prefixed by anything

• The utility functions are prefixed by U x, where x is the choice id. U 1
or U 2 are, for example, valid.

• Draws are prefixed by draw. Passing nDraws parameter into the max-
Likelihood function, a set of draws will be generated automatically.
Currently, this defaults to a halton sequence. Alternatively, any set of
draws (Sobel, MLHS (Hess et al., 2006), etc) can be passed in as an
argument, as long as the matrix is large enough to accommodate the
number of individuals and random parameters.

• Standard mathematical functions such as addition, multiplication, ex-
ponentiation, and equality comparisons are allowed.

The syntax is best explained with a small example based on the classic
Train dataset available in the mlogit package:

7

ASC_A_RND = @ASC_A + draw_1 * @SIGMA_A1 + draw_2;

ASC_B_RND = @ASC_B + draw_3 * @SIGMA_B;

U_pt = ASC_A_RND + @B_price * $price_A + @B_timeA * $time_A / 60

+ @B_change * $change_A;

U_car = ASC_B_RND + @B_price * $price_B + @B_timeB * $time_B / 60;

In this example all the words prefixed with @ (ASC A, SIGMA A1, ...)
are parameters to be estimated. Those with $ are variables of the observa-
tions available in the data. In this example there are three random parame-
ters required, indicated by the draw variables. Two intermediate variables
are also calculated, ASC A RND and ASC B RND, which are then used in
the two utility functions. The RND suffix indicates that these are random
coefficients, for which posteriors can be calculated. These specifics and more
details on the syntax are covered in the user-guide supplied with the pack-
age. The availabilities must be supplied as a separate matrix, with one row
for each observation, and one column for each alternative used in the model
specification. The package also provides functions for prediction and the
calculation of posteriors for random variables.

Unlike in biogeme, the likelihood function cannot be modified by the user.
However, for a large range of problems, it is sufficient to encode the behaviour
in the utility functions, and use a standard log-likelihood function for panel
data, as described in Section 2.1.

4.2. Estimation

For estimation, mixl wraps the optimisation routine from the maxLik
package (Henningsen and Toomet, 2011). As Train (2009) suggests, the
BFGS (Witzgall and Fletcher, 1989) optimization procedure is used as de-
fault. The interface is designed so that all possible parameters to maxlik can
be passed through, including the choice of modeller, hessian function, and
a limit on the number of iterations. The fixing of paramter values is also
supported.

4.3. Estimation of hybrid choice models

The package also supports hybrid choice models. If models include vari-
able definitions with the prefix P indic , the model is assumed to have hybrid

8

components, and the P indic variables will be considered as probability in-
dicators for each observation. The pre-compiler detects these automatically,
and generates the code to include the product of the probability indicators
in the log-likelihood as such:

p_choice = log(chosen_utility / sum(utilities));

p_indic_total = P_indic_1 * P_indic_2 * P_indic_k;

p_choice = p_choice + (1/count) * log(p_indic_total);

The count variable, used to normalize the choice indicator, represents
number of choice observation per individual and must also be included in
the data. On convergence, the model estimation will return both the choice
log-likelihood and the model log-likelihood. One extra column is required in
the dataset to enable hybrid choice, namely a ‘count’ column with the total
number of observations for the individual making the choice.

4.4. Post processing

The mixl package provides some key post processing functions for work-
ing with an estimated model. The estimation results include all the expected
components, such as the (robust) covariance matrix, table of coefficients,
standard errors, hessian matrix. The predict function generated for each
model allows different scenarios to be tested. For models with mixed distri-
butions, posteriors can also easily be calculated. Random variables in the
model specification are automatically detected (those with an equation in-
cluding a draw), and the posterior function returns a labeled matrix of the
posteriors for each individual and random variable. This can all be done
without leaving the R environment, as the results are always returned as
either matrices or dataframes.

5. Example

In this section we present the iterative development of a model, starting
with a basic MNL model, followed by a mixed MNL model. This provides
a good example of how the successively more advanced models can be itera-
tively developed using the mixl package.

9

1 l i b r a r y (mixl)
2 data (‘ Train ’ , package=‘mlogit ’)
3 head (Train , 3)
4 Train$ID <− Train$id
5 Train$CHOICE <− as . numeric (Tra in$cho ice)
6
7 mnl te s t <− ‘
8 U PT = @B price ∗ $pr ice A / 1000 + @B time ∗ $time A / 60 + @B change ∗ $change A ;
9 U Car = ASC B + @B price ∗ $pr i ce B / 1000 + @B timeB ∗ $time B / 60 ;

10 ’
11
12 model spec <− spec i f y mode l (mnl test , Train)
13
14 e s t <− setNames (c (0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1) ,
15 c (‘ B price ’ , ‘ B time ’ , ‘ B timeB ’ , ‘ B change ’ , ‘ASC B’ , ‘ SIGMA B’))
16
17 a v a i l a b i l i t i e s <− mixl : : g e n e r a t e d e f a u l t a v a i l a b i l i t i e s (
18 Train , mode l spe c$num ut i l i t y func t i on s
19)
20
21 model <− es t imate (model spec , est , Train , a v a i l a b i l i t i e s)
22 summary(model)

Using the mode choice dataset from the mlogit package, it is straightfor-
ward to set up the data for our model in lines 2-5. Only the ID and CHOICE
variables need to be converted to continuous values starting from 1. We then
specify a straight forward model as a string of text in R as follows (7-11).
The model has two alternative modes, public transport (PT) and car. PT
has one extra attribute, namely the number of transfers (change A). Vari-
ables in the dataset are prefixed with $ and β to be estimated with @. We
then call specify model to convert this model specification to a log-likelihood
function. The dataset is passed in so that the variables in the model can be
verified.

The starting values are specified on line 15 and the availabilities on line
18. Here we use a function to indicate that both alternatives are always
available. The estimate function is then called on the model specification,
and the results presented to the user.

The output from a estimated model is presented in the console as follows:

10

Model diagnosis: successful convergence

Number of decision makers: 235

Number of observations: 2929

LL(null): -2030.228

LL(init): -2030.228

LL(final): -1842.251

Rho2: 0.093

Estimated parameters: 5

Estimates:

est se trat_0 trat_1 robse robtrat_0 robtrat_1 ...

B_price -1.0396 0.0599 -17.36 -34.05 0.1055 -9.86 -19.34 ...

B_time -0.8071 0.1415 -5.70 -12.77 0.1694 -4.76 -10.67 ...

B_timeB -0.9534 0.1508 -6.32 -12.95 0.1656 -5.76 -11.80 ...

B_change -0.1406 0.0576 -2.44 -19.82 0.0620 -2.27 -18.38 ...

ASC_B 0.1979 0.1917 1.03 -4.18 0.1839 1.08 -4.36 ...

To add mixing, some random components are added to the model speci-
fication, with the random draws prefixed with draw . The specification adds
mixing on the alternative-specific constant for car and on journey time, using
two random parameters.
mnl te s t <− ‘

ASC B RND = @ASC B + draw 1 ∗ @SIGMA B;
TIME A RND = @B timeA + draw 2 ∗ @SIG time ;
TIME B RND = @B timeB + draw 2 ∗ @SIG time ;

U PT = @B price ∗ $pr ice A / 1000 + TIME A RND ∗ $time A / 60 + @B change ∗ $change A ;

U Car = ASC B RND + (@B price ∗ $pr i ce B / 1000 + TIME B RND ∗ $time B / 60) ;
’

The same code as before is used to estimate the model with the addition
of the required number of halton draws (in this example 20) which has to be
defined in the estimate function. By including just two random parameters,
a scale and a sigma, the log-likelihood improves by almost 20 units. Table 2
shows the results of the MMNL model, outputed using a function provided
in mixl using the texreg package.

6. Performance

Since the random draws are generated per individual and not per choice
task (of which an individual may make multiple), there are two possible

11

Mixed MNL

B price −1.10∗∗∗

(0.11)
B timeA −0.85∗∗∗

(0.21)
B timeB −1.05∗∗∗

(0.21)
B change −0.17∗∗

(0.06)
ASC B 0.28

(0.20)
SIGMA B −0.07

(0.07)
SIG time 1.89∗∗∗

(0.35)

estimated parameters 7
Number of respondents 235
Number of choice observations 2929
LL(null) -2030.23
LL(final) -1824.96
McFadden R2 0.101
AIC 3663.92
AICc 3664.41
BIC 3705.79
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: Latex model output from a mixed MNL model esitmated with mixl

12

approaches to combining the fixed and random variables. To take advantage
of R vectorization, the draws must be replicated for each choice task of an
individual. However as mentioned, this approach breaks down for large panel
datasets, especially when the number of draws increases. The approach used
in the mixl package avoids this, by accessing the required draws using the ID
of the individual. Hence, as seen in Table 3 the memory usage increases to
store the larger draw matrix and the output probability matrix. For smaller
problems the memory is bound by other requirements of the program such
as the compiler. Essentially, the program is not limited by the number of
individuals or repeated choices in the dataset, number of random dimensions
or the number of draws used.

Draws 10 100 1000 10,000
Memory (MB) 530 534 538 2097

Table 3: Memory usage for the Train example data with different numbers of draws

With the widespread availability of multi-core machines and computing
clusters, multi-core scalability is an important consideration. mixl achieves
consistent speedups even on large numbers of cores. Figure 1 and Table
4 show the performance of the isolated log-likelihood function for different
numbers of draws over an increasing number of cores. An average of 50
repetitions for each configuration is taken. For nearly all draw configurations,
large speedups are observed. For the 10 draw configuration, communication
costs dominate and a maximum speedup of 4.78x is observed. As the number
of draws used is increased, so do the benefits of using parallel computing.
On 24 processing cores for 10,000 draws, a speedup of 19.3x is observed.
It is worth noting that only the utility calculation has been parallelized,
and still more potential remains in other parts of the log-likelihood function
to improve this figure slightly. The results in Table 4 show a super-linear
speedup in the 4 core case. This can be attributed to cache-effects on the
processor.

Figure 5 illustrates the runtime for the estimation of a large MMNL model
on a large panel dataset with 491 individuals and 17120 observations. The
model contained 27 free parameters, 15 utility functions and 12 random pa-
rameters. With the previous R-only code (CMC, 2017), estimation with 1000
draws took 3 days and 16 hours and required 27 gigabytes of memory. Esti-
mation with 10,000 draws would have taken at least 30 days. Compared to

13

Processors
Draws 2 4 8 16 24

10 1.56 2.81 2.73 3.51 4.78
100 1.92 3.83 5.09 6.96 14.76
500 1.94 4.04 5.91 9.09 17.40
1000 1.95 4.04 6.16 9.60 18.49
5000 1.96 4.11 6.28 10.22 19.58
10,000 1.97 4.21 6.31 10.25 19.35

Table 4: Speedup over multiple cores for the log-likelihood calculation

the results in Table 4, the speedup over multiple cores is lower, due to outer
optimization loop, which is not coded in C++. Again, larger problem sizes
extract better relative performance from more cores. The multicore feature
of mixl is automatically available on Linux machines. for computers running
windows and OSX, a short one time setup process is required.

Processors
Draws 1 2 4 8 16 24

10 00:09:14 00:04:01 00:03:03 00:02:01 00:01:36 00:01:11
(2.3) (3.02) (4.57) (5.76) (7.76)

100 01:40:52 00:51:09 00:27:16 00:18:33 00:14:23 00:08:10
(1.97) (3.7) (5.44) (7.01) (12.33)

1000 17:00:51 07:55:16 04:39:28 02:53:57 01:59:29 01:13:23
(2.15) (3.65) (5.87) (8.54) (13.91)

10,000 135:09:02 81:52:51 51:18:38 25:45:06 16:00:17 10:10:01
(1.65) (2.63) (5.25) (8.44) (13.29)

Table 5: mixl performance on a large dataset, speedup in brackets

7. Conclusion

This paper presents the mixl R package for estimating multinomial logit
models. Mixed models and hybrid choice models are supported through a
flexible and intuitive syntax. The package has been designed to have an intu-
itive model specification syntax, and is engineered with both large datasets

14

Figure 1: Performance of the log-likelihood function over multiple cores

and complex mixed models in mind. There is no practical limit to either
the size of the dataset or the number random draws that can be used, as
both estimation and memory usage scale linearly with the number of draws.
For large problems, parallel computing is an attractive way to gain signifi-
cant speed increases, and mixl achieves speedups of 14x using 24 cores. The
paper presents performance indicators on a complex mixed MNL model es-
timated on a large dataset with over 17,000 observations. The package has
also already been used in modelling projects (among them, Schmid et al.,
2017) with hundreds of thousands of observations and 10,000 random draws,
indicating its robustness and scalability. Future work will aim to integrate
the work with other estimation packages and support more model types such
as the probit kernel.

15

Figure 2: Estimation runtime of a large model with different numbers of draws

8. Acknowledgements

The Authors would like to thank Kay W. Axhausen for his input and
comments. Additional thanks goes to Stephane Hess, who’s original R script
for discrete choice modeling was the inspiration for this R package. The work
was undertaken with the financial support of SNF and the German Railways.

Downloading the package

The estimation software is provided as an R package on the code sharing
website, Github. To install the code, first make sure the devtools package is
installed. Then run the following command:

dev too l s : : i n s t a l l g i t h u b (‘ joemol loy / f a s t−mixed−mnl ’)

16

References

ALOGIT (2016) ALOGIT Software & Analysis Ltd.

Ben-Akiva, M., D. McFadden, K. E. Train, J. Walker, C. Bhat, M. Bier-
laire, D. Bolduc, A. Boersch-Supan, D. Brownstone, D. S. Bunch, A. Daly,
A. de Palma, D. Gopinath, A. Karlstrom and M. a. Munizaga (2002) Hy-
brid Choice Models : Progress and Challenges, Marketing Letters, 13 (3)
163–175.

Ben-Akiva, M. E. and S. R. Lerman (1987) Discrete Choice Analysis: Theory
and Application to Predict Travel Demand.

Bierlaire, M. (2016) PythonBiogeme : a short introduction, TRANSP-OR
160706, Series on Biogeme, Technical Report, Transport and Mobility Lab-
oratory, EPFL, Switzerland.

Chapman, B. M. and F. Massaioli (2005) OpenMP, Parallel Computing,
31 (10) 957–1174.

CMC (2017) CMC Choice modelling code for R, Technical Report, Choice
Modelling Centre, University of Leeds.

Eddelbuettel, D. and R. Francois (2011) Rcpp: Seamless R and C ++ inte-
gration, Journal Of Statistical Software, 40 (8) 1–18.

Greene, W. H. (2002) NLOGIT reference guide : version 3.0.

Hasan, A., W. Zhiyu and A. S. Mahani (2014) Fast Estimation of Multi-
nomial Logit Models: R Package mnlogit, Journal of statistical software,
75 (3).

Henningsen, A. and O. Toomet (2011) MaxLik: A package for maximum
likelihood estimation in R, Computational Statistics, 26 (3) 443–458.

Hess, S., K. E. Train and J. W. Polak (2006) On the use of a Modified Latin
Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit
Model for vehicle choice, Transportation Research Part B: Methodological.

McFadden, D. (1974) Conditional logit analysis of qualitative choice behav-
ior, in P. Zarembka (ed.) Frontiers in Econometrics, 105–142, Academic
Press.

17

McFadden, D. (1980) Econometric Models of Probabilistic Choice among
Products, Journal of Business, 53 (3) 13–29.

McFadden, D. and K. Train (2000) Mixed MNL models for discrete response,
Journal of Applied Econometrics, 15 (5) 447–470.

Nocedal, J. and S. J. Wright (2000) Numerical optimization 2nd edition,
Springer.

Schmid, B., F. Aschauer, S. Jokubauskaite, S. Peer, R. Hssinger, R. Gerike,
S. R. Jara-Diaz and K. W. Axhausen (2017) A pooled RP/SP mode, route
and destination choice model to capture the heterogeneity of mode and
user-type effects, paper presented at the 5th International Choice Modeling
Conference (ICMC), Capetown.

Schmid, B. and K. W. Axhausen (2018) In-store or online shopping of search
and experience goods: A hybrid choice approach, Journal of Choice Mod-
elling (In Press).

Train, K. E. (2009) Discrete choice methods with simulation, Cambridge uni-
versity press.

Walker, J. and M. Ben-Akiva (2001) Extensions of the Random Utility
Model, Technical Report, MIT.

Witzgall, C. and R. Fletcher (1989) Practical Methods of Optimization.,
Mathematics of Computation.

18

