
TIME DISCRETIZATION IN
INTEGER PROGRAMMING

Martin Savelsbergh
Georgia Institute of Technology

Joint work with
Minh Vu Duc – University of Tours
Mike Hewitt – Loyola University
Luke Marshall – Microsoft Research
Edward He & Felipe Lagos – PhD students, Georgia Institute of Technology
Natashia Boland & George Nemhauser – Georgia Institute of Technology

It’s About Time

Outline

• Motivation

• Dynamic Discretization Discovery

• Dynamic Discretization Discovery for Time-dependent Shortest Paths

• Dynamic Discretization Discovery for the Time-dependent Traveling

Salesman Problem with Time Windows

• Final Remarks

Motivation

• Time-dependent models
 Occur whenever a schedule of activities needs to be constructed

 Involve decisions about the times at which activities occur and/or resources are
utilized

• Time-dependent models are pervasive in applications
 Production planning

 Public transit scheduling

 Space flight logistics

 Service network design

 Vehicle routing
 …

Motivation

• Integer programming formulations based on time-expanded networks
are often considered/used for solving time-dependent models

• Typically these use a regular discretization of time

 What granularity to choose (minutes, hours, days, weeks, …)?

Motivation

• Time-expanded network trade-off:

 Coarse discretization: small network, low fidelity

 Fine discretization: large network, high fidelity

• Observation:

 Coarsening the discretization (to increase computational efficiency) can
significantly increase the cost of a service network design

Note: Not always easy to see/argue
that a time-expanded network
formulation exists that will produce a
continuous-time optimal solution

Dynamic Discretization Discovery

Solving integer programming formulations based on
time-expanded networks efficiently and effectively

Dynamically discovering time points that are needed to
find and prove (continuous-time) optimal solutions

Dynamic Discretization Discovery

Find lower bound (solve partially
time-expanded network IP)

Convert solution to an upper
bound (solve LP or IP)

Check if optimalStop

Add time points to improve
lower bound

Service Network Design
Full discretization IP sizes

optimistic rounding

Service Network Design
DDD algorithm performance

Relative size of partial time-expanded
network in final iteration

Relative size of integer
program in final iteration

• CTSNDP-Solve maintains a much smaller network than that of the full discretization
• Final network is never more than 4% of the full size for the 1-minute case

Service Network Design
DDD algorithm performance

Frequency of improvementPrimal and dual gaps by iteration

Dynamic Discretization Discovery – Key Ideas

• Focus on partially time-expanded networks

• Define an optimization problem over the partially time-expanded
network that provides a dual bound

• Define an optimization problem that attempts to convert a solution to
the optimization problem over the partially time-expanded network
into a continuous-time feasible solution

• Iteratively refine the partially time-expanded network until a
continuous-time feasible solution of desired quality has been obtained

Time-Dependent Shortest Path Problems

Motivation: Time-Dependent Travel in Atlanta

origin

destination

Georgia
Tech

Travel Time Functions

Travel time functions obtained
from GPS traces from different
sources (car navigation
systems & cell phones)

Minimum Paths
Earliest arrival path, latest departure path, and minimum duration path in the period 9:00 – 13:00

Earliest arrival path: 47.5 min Latest departure path: 47.8 min Minimum duration path: 45.8 min (dep: 10:37)

Time-Dependent Shortest Paths

FIFO = no overtaking; start earlier → arrive earlier

Objectives:
• Minimize arrival time
• Minimize duration
• Minimize travel time

Time-Dependent Shortest Paths

Minimum Duration Time-Dependent Shortest Path Problem

Example

min duration 2.5
if start at time 4

Example
t*=4, c*=2.5

1

2

3

2 4 6 80
time

duration = 5 duration = 4 duration = 3

Path (1,2,3)

• Given a fixed start time, the minimum arrival time path can be found by a time-dependent
(TD) version of Dijkstra's algorithm

• Orda and Rom (1990) first described the minimum duration path problem

• Discrete algorithms

 discretize the possible start times, and apply TD Dijkstra's to each start time

 quality of solution depends on quality of discretization

• Continuous algorithms

 use variants of Dijkstra's (Nachtigall 1995) or A* algorithm (Kanoulas 2006)

 solution is exact, however, requires repeated functional operations

• Foschini and Suri (2014) observe that for piecewise linear continuous travel time functions

 there always exists an optimal path that contains a departure at a breakpoint, and

 gave an exact algorithm that considers all start times associated with such breakpoints

Existing Approaches

• Foschini and Suri (2014) investigates all the breakpoints.

• Is there a way to dynamically decide which breakpoints to investigate?

• Dynamic discretization discovery (DDD) idea:

 Each node has a time discretization

 The time between consecutive time points is an interval

 Time points are created using Arc-Completed Backward Shortest Path Trees (ABSPTs)

 Given a time, t, at the end node

o Find the latest time that a path could depart at a node to reach the end node at
time t (using backward TD Dijkstra); the travel time associated with the path from
the start node gives an upper bound

o For each node create a time point at that time (at that node)

o Create a timed copy of each arc, using the time points created (may be “too short”)

 Give each arc a cost: the minimum travel time for that arc over the subsequent interval

 The least cost path in any ABSPT must be a lower bound on the minimum duration

Concept for a DDD Approach

i

interval

UB = 3.0

LB = 2.0

• Dynamic discretization discovery (DDD) idea:
 Each node has a time discretization

 The time between consecutive time points is an interval

 Time points are created using Arc-Completed Backward Shortest Path Trees (ABSPTs)

 Given a time, t, at the end node

o Find the backward shortest path tree

o Create a copy of each arc, using the time points created (some may be “too short”)

 Give each arc a cost: the minimum travel time for that arc over the subsequent interval

 The least cost path in any ABSPT must be a lower bound on the minimum duration

 If there is a gap between lower and upper bound, look for an arc in the ABSPT that gave the lower bound
whose next breakpoint is strictly within the next interval

o Find the path from that breakpoint arc’s origin node at the breakpoint time to the end

o This gives a time on the end node: construct the ABSPT

o Update the costs on arcs in the preceding ABSPT

Concept for a DDD Approach

i

interval

UB = 3.0

LB = 2.0

UB = 2.5

UB = 2.5

UB = 2.5

LB = 2.5

• Dynamic discretization discovery (DDD) idea:
 Each node has a time discretization

 The time between consecutive time points is an interval

 Time points are created using Arc-Completed Backward Shortest Path Trees (ABSPTs)

 Given a time, t, at the end node

o Find the backward shortest path tree

o Create a copy of each arc, using the time points created (some may be “too short”)

 Give each arc a cost: the minimum travel time for that arc over the subsequent interval

 The least cost path in any ABSPT must be a lower bound on the minimum duration

 If there is a gap between lower and upper bound, look for an arc in the ABSPT that gave the lower bound
whose next breakpoint is strictly within the next interval

o Find the path from that breakpoint arc’s origin node at the breakpoint time to the end

o This gives a time on the end node: construct the ABSPT

o Update the costs on arcs in the preceding ABSPT

 If there is no such breakpoint, then the ABSPT can safely be deleted but its time points kept

Concept for a DDD Approach

i

interval

The DDD Algorithm

• The problem of finding the least cost path
decouples by ABSPTs; these do not
interact with each other except for
providing time points for arc cost
calculations

• This allows UB and LB for each ABSPT to
be computed independently (cheaply)

A Bigger Example

Numerical Experiments
• Randomly generated test instances

• Graphs are dense: there is an arc between every pair of nodes

• Travel time functions are linear interpolants of sine functions (which ensures FIFO
property) with random period

• Comparison of DDD with Foschini & Suri

• DDD investigates significantly fewer breakpoints and scales better when the number of
breakpoints are increased

n = number of nodes in
network

S = number of breakpoints
per integer interval

T = 200

Extension: Minimizing Total Travel Time

• Theorem: There exists an optimal minimum travel time path that
contains travel subpaths (maximal subpath that does not contain any
waiting) which are optimal minimum duration paths

Waiting arcs need to be added to the time-expanded network

Extension: Minimizing Total Travel Time

CSPP: Minimize combination of travel time and waiting
CWMTTP: Minimize travel time subject to constraint on waiting

Tally set: nodes where waiting contributes to objective or constraint

Generalizations

Idea: Add appropriate costs to time-expanded network.

Idea: If waiting constraint not tight, solution is an MTTP for
some time horizon. Else if waiting constraint is tight, how
long to wait is known.

Idea: Reduction from PARTITION.

Generalizations

Example

• If waiting time constraint is not tight:

 There exists an optimal CWMTTP solution that is an MTTP solution for some time
interval

 By perturbation arguments that MTTP solution must start at one of the timed
copies of node 1 (K) and end at one of the timed copies of node n (K)

 Examine all possible time intervals (K2)

Example

• If waiting time constraint is tight:

 Either there exists an optimal CWMTTP solution whose first to second last travel
subpath is an MTTP solution from node 1 to some node j, or there exists an
optimal CWMTTP solution whose second to last travel subpath is an MTTP
solution from some node j to node n

 Remaining travel time subpath can be found by waiting until the waiting time
constraint is tight and finding a minimum arrival time path

 Examine all possible time intervals (K2)

Time-Dependent Traveling Salesman Problem with Time Windows

Traveling Salesman Problem with Time Windows

• The Traveling Salesman Problem (TSP) asks the following question:
"Given a list of cities and the distances between each pair of cities, what
is the shortest possible route that visits each city exactly once and
returns to the origin city?"

• The Traveling Salesman Problem with Time Windows (TSPTW) is similar
to the TSP except that the cities must be visited within a given time
window. This added time constraint renders the problem even more
difficult in practice. In fact, even finding a feasible solution is difficult.

Traveling Salesman Problem with Time Windows

Compact formulation

arrive exactly once

depart exactly once

dispatch time consistency

respect time windows

do we travel from i to j?

time we depart from i

Traveling Salesman Problem with Time Windows

Extended formulation

do we depart from i to j at time t? Time-expanded network

location

time

Observations

• Compact models that use continuous variables to model time have weak
linear programming relaxations.

• Extended formulations with binary variables indexed by time have strong
linear programming relaxations, but (tend to) have a huge number of
variables.

Time-expanded networks

1

2

3

0

[1,5] [4,6]

[2,4]

[0,7]

Depot

All arcs have travel time 1

0

2

1

3

0 1 2 3 4 5 6 7

All arcs are directed forward in time

Time-expanded networks

0

2

1

3

0 1 2 3 4 5 6 7

1

2

3

0

[1,5] [4,6]

[2,4]

[0,7]

Depot

All arcs have travel time 1 All arcs are directed forward in time

1 unit flows into every node
1 unit flows out of every node
Flow in = flow out at each time-space node

Dynamic Discretization Discovery

• Partially time-expanded network
 Include TW start nodes

 Early arrival property

• Dual bound formulation
 Flow in = flow out at each TS node

 Enter each node exactly once

 Guaranteed lower bound

• Issues
 May have subtours

 How to get a primal feasible solution?

 How to improve the dual bound/refine the discretization?

All arcs are directed forward in time…
…except those that are too short

0

2

1

3

0 1 2 3 4 5 6 7

Addressing subtours

• Options

 Use formulations that prevent subtours with continuous flow variables
– Single commodity

– Multicommodity (one for each customer)

– Flowing in original network or in time-expanded network

 Refine time-expanded network until none are possible
– Add a new time point

– Lengthen a too-short arc

– Now the subtour cannot be used

Getting a primal feasible solution

• Once subtours are eliminated, any feasible solution to the IP formulation
on the partially time-expanded network induces a tour

• However the tour may violate time windows

 Any TW-violating subpath in the tour must contain an arc that is too short

2

3

1[5,7]
3

[6,14]

[8,12]6

Bad path: 5 + 3 + 6 > 12

1

2

3

5 6 7 8 9 10 11 12

Too short

Dynamic Discretization: base algorithm
Find lower bound: solve partially

time-expanded network IP

Are there any subtours or bad
subpaths in the solution?

Choose one too short arc from each
(some) subtour and bad subpath

Stop: this solution is
optimal

Create new time points and

update partial discretization

no

yes

Algorithm Enhancements

• Preprocessing
 On original network

– Derive precedence relations
– Tighten time windows
– Eliminate arcs

 On partially time-expanded network
– Maintain latest time tour can depart customer i to go to customer j without making it

impossible to visit some customer k
– Eliminate/do not create time-space arcs starting at later times

• Cutting
 Textbook subtour elimination

 Textbook bad path elimination

Algorithm Enhancements

• Primal heuristics

 Create a partially time-expanded network that yields an upper bound formulation
– for each time-space node (i,t) and each original arc (i,j)

– find smallest s such that s – t is at least the travel time from i to j

– create time-space arc ((i,t),(j,s))

 Any feasible solution found is feasible for the TSPTW

 Run with a time limit

Algorithm Enhancements

• A second primal heuristic that also accelerates dual convergence

 Start with the current lower bound network
– for any arc that is currently going backwards in time

– lengthen it as little as possible, but enough to ensure it goes forward in time

 Feasible solutions may or may not be feasible for the TSPTW

 Run with a time limit

 Harvest all feasible solutions found
– if feasible for the TSPTW, may replace incumbent

– if not, collect bad subpath information and add the corresponding cutting planes to the dual,
lower bound, IP

Computational Results

• N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. “The Continuous-Time Service Network Design
Problem”, Operations Research 65, 1303-1321, 2017

• F. Lagos, N. Boland and M. Savelsbergh, “The continuous time inventory routing problem”, Transportation
Science, to appear.

• D.M. Vu, N. Boland, M. Hewitt, and M. Savelsbergh, “Solving Time Dependent Traveling Salesman Problems
with Time Windows”, Transportation Science, to appear.

• N. Boland and M. Savelsbergh, “Perspectives on Integer Programming for Time Dependent Models”, TOP,
available online.

• L. Marshall, N. Boland, M. Hewitt, and M. Savelsbergh. “Interval-based Dynamic Discretization Discovery for
Solving the Continuous-Time Service Network Design Problem”, Optimization Online 6883, 2018

• E. He, N. Boland, G. Nemhauser and M. Savelsbergh, “Dynamic Discretization Discovery Algorithms for
Time-Dependent Shortest Path Problems”, Optimization Online 7082, 2019

Dynamic Discretization Discovery

Questions?

