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Abstract

Shared mobility is widely discussed, yet only few travelers actually make use of shared
services. Apart from personal characteristics, the supply and more specific the supply
density of shared vehicles is assumed to be crucial for a widespread shared mobility usage.
In this paper, we test this hypothesis. Moreover we provide insights into the impact of
current mobility behavior on the usage intention for shared transport services.
For this purpose, we combine existing transport usage data with the real supply of shared
vehicles in selected cities in Germany. We investigate free-floating and station-based
car- and bikesharing, free-floating e-scootersharing, as well as ridesharing. To do so, we
collected data on the vehicles supplied per service for beginning of 2020. In a first step, we
analyze group differences in terms of intended usage between people living in cities where
the services are offered and those who live in cities without access to such services. This
information is used in a second step when we analyze to what extent the supply density is
driving usage intention for a specific trip purpose obtained from the first analysis step.
Therefore, we apply logistic regression analyses that focus on socio-demographics, the
users’ possession of mobility tools (e.g. driver’s license, car access, transit pass), their
current transport behavior and the availability of services respectively.
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1 Introduction

Shared transport services are one part of the "sharing economy" (Botsman and Rogers,
2010). In this sense, they are characterized as services that simultaneously or sequentially
share any kind of vehicles or services amongst a defined group of users. Moreover, they use
the potentials of the so-called servitization process that also takes place in the transport
industry (Smith et al., 2018; Vandermerwe and Rada, 1988). Hence, past analyses arguing
people would need to own private cars or other modes of transport in order to use them
(Le Vine et al., 2013) do not hold true anymore. For this reason, these services complement
or sometimes even replace former products such as private cars. This makes them one
important backbone of sustainable transport systems (Jochem et al., 2017). As 32% of
transport related greenhouse gas emissions in Europe can be traced back to motorized
individual transport (EEA, 2018), shared transport services are one crucial component to
fulfill the global climate targets (UNFCCC, 2015). This, however, makes it important to
understand potential adoption processes and following usage patterns of these services.
Especially because the resulting effects of shared transport services can be both positive
and negative, evaluation of these is important. By doing so, it can be assessed how these
effects could be steered in order to reduce the ecological footprint of passenger transport
(Jalali et al., 2017). Potential objectives could be shifting transport from more carbon
emitting modes towards shared systems (Dalkmann and Brannigan, 2007). Therefore,
this paper aims to shed light on the usage intention of the urban population in Germany
towards shared transport services.
In this paper, shared transport services comprise carsharing, bikesharing, e-scootersharing
and on-demand ridesharing. Carsharing and bikesharing here include both station-based
as well as free-floating systems. Furthermore, bikesharing included both conventional
bikes and pedelecs. E-scootersharing systems were completely free-floating systems at
time of the survey (September/October 2019). On-demand ridesharing is understood
as both ridehailing and ridepooling, thereby making use of the differentiation between
sharing and pooling (Bösch et al., 2018). Hence, it can be used as single-occupancy service
but also as a pooled service with unknown people using the same vehicle.
The usage intention for the analysed services is assumed to be explained by the services’
characteristics as well as user behaviors such as the access to or usage of mobility tools.
By combining these two views, a broader understanding of the driving factors towards
using these services can be obtained.
In the next section 2, the data used for this paper is described. Section 3 is divided into
three parts: First, differences in usage intention for each service are analysed using simple
t-tests. Second, the supply density and further variables explained in section 2 are added
to logistic regression models for each service. These models are estimated and afterwards
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cross-validated by using them for predictions in test data sets. Third, simulations are used
to analyse differences in usage intention for selected variables. In section 4, we summarize
our findings and draw conclusions.

2 Data

The data presented and analysed within this paper stem from a survey undertaken from
late September to early October 2019 (Krauss et al., 2020). It was collected via an
online survey by using quota sampling. Therefore, only residents of cities in Germany
larger than 100,000 inhabitants were eligible for participation. The limit is based on the
RegioStaR categorization of the Federal Ministry of Transport and Digital Infrastructure
(BMVI, 2020). In this logic, we sampled people living in RegioStaR7 categories 71 and 72.
The former refers to high-density urban areas (metropolises) whilst the latter refers to
less dense urban areas (regiopolises and cities). The quotas for the region of residence
(the federal states were allocated to either North, East or South in accordance with the
location and number of cities of interest for this study), education (low, middle, high), and
gender x age (18-29, 30-39, 40-49, 50-59, 60-69, 70+ years) were fixed based on reference
values by Eurostat (Eurostat, 2011). In total N = 3,061 respondents were randomly
assigned to one of the four services. Cleaning and post-processing of the data set led to
the following sample sizes: For carsharing, the sample includes n = 478, bikesharing n =
487, e-scootersharing n = 528, and ridesharing n = 700 respondents. The slightly larger
data set for ridesharing is mainly due to not having to exclude respondents with mobility
restrictions such as sight- or motion-restrictions.

This paper draws on the socio-demographics, the mobility tool holdings, current mobility
behavior as well as the usage intention towards the respective transport service.
Sociodemographics. Respondents indicated age, gender, household income, and level of
education.
Residence. Respondents were also asked for the ZIP code of their home, which was used
to categorize them according to RegioStaR.
Service supply density. We enriched the data set by a detailed desk research into the
supply of the respective service in the cities surveyed (last updated April 2020). Therefore,
we investigated whether any of the four services is provided in the cities of interest. If
there was one, we searched for fleet numbers, i.e. the number of available vehicles in
this city. For carsharing, we used data from the Bundesverband CarSharing e.V. (federal
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association for carsharing) and extended it where necessary. For the other three services,
we researched respective data by drawing on the suppliers’ websites as well as newspaper
articles or blog entries. In order to integrate the size of the cities, the fleet numbers were
divided by the number of inhabitants in thousand.
Mobility tools. Respondents were asked whether they hold a driver’s license (if not, they
were not selected into the carsharing sub-sample) and whether they hold a transit pass
for public transport ("yes" is indicated by 1, "no" by 0). They also indicated the degree
to which they had access to a private car (scale from 1 "always" to 4 "never").
Mobility behavior. In order to factor in the usual mobility behavior of the respondents,
they were also asked for the degrees to which they enjoy walking, cycling, driving a car,
and using public transport (e.g. "I like to go by foot." on a scale from 1 "totally disagree"
to 7 "totally agree"). They also assessed the situation for walking, cycling, driving a car,
and public transport in their city (scale from 1 "very good" to 6 "insufficient").
Environmentalism. Respondents indicated the degree of their environmental concern with
three statements (e.g. "Protecting the environment is an important concern to me.") on
Likert-scales from 1 ("I do not agree at all.") to 5 ("I agree completely.").
Opinion about the respective transport service. Respondents indicated their global opinion
about the service they were asked about on a scale from 1 ("very negative") to 7 ("very
positive").
Usage intention. The usage intention towards the service was indicated by respondents
to what extent they can imagine to use the service on a scale from 1 = "definitely not"
to 5 = "definitely yes". For the analyses undertaken within this paper, a dichotomous
variable was created that is 1 if the respondent indicated 4 = "possibly yes" or 5. If the
respondent indicated 1 to 3, the usage intention is set to 0. By doing so, we aim to clearly
differentiate between usage or non-usage that is closer to real-life decision-making.
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3 Results

The results of this paper are structured as follows: First, the differences in usage intention
for people living in cities with a respective service supply is tested against the usage
intention of people living in cities with no such service. This is followed by analysing
the impact of the variables explained in section 2 on the intention to use car-, bike-,
e-scooter or ridesharing. This is done by running a logistic regression for each service that
is calculated based on a sub-set of the data (the training data set) and cross-validating it
with the remainder of the data (the test data set). Third, simulations are used in order to
analyse differences towards usage intention.

3.1 Supply density

As can be seen from Table 1, the amount of e-scooters put on the streets in the autumn of
2019 has been enormous. There are more e-scooters in the larger German cities than bikes
in respective sharing systems. Four cities have e-scooter numbers of above 7 per 1,000
inhabitants with Bonn leading this group (7.97 scooters/1,000 inhabitants). Bikesharing
systems are well below with approximately 4 to 5 bikes per 1,000 inhabitants. Dusseldorf
exhibits the highest density with 4.84 bikes. Regarding carsharing, Karlsruhe is on top of
the list with a plus of more than one car over the second city Munich. This is especially
remarkable as Karlsruhe is, together with Freiburg, the only city with less than one million
inhabitants in this group. Ridesharing service densities are not as easy to interpret as
one vehicle can transport several people at once. Hence, these numbers are substantially
smaller than those of the other three services. With 0.16 vehicles per 1,000 inhabitants,
Dusseldorf tops the list here. We observe that Dusseldorf has a rather large supply of
the four shared transport services investigated in this survey. Berlin and Munich also
offer large numbers of vehicles but interestingly this does not apply for the e-scooters.
Looking at the absolute numbers, of course, Berlin tops the list with approximately
15,000 e-scooters, followed by Hamburg (8,275), Cologne (7,889) and Munich (7,313).
Nevertheless, it is interesting to observe that especially larger cities but not metropolises
seem to be of interest for e-scootersharing suppliers.

In a first step towards analysing the impact of supply density on usage intention of people
(scale from 1 = "definitely not" to 5 = "definitely yes"), we conducted two-sided t-tests
with the means of usage intention between people living in cities with supply and those
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Table 1: Highest supply densities of car-, bike-, e-scooter, and ridesharing in German cities
(per 1,000 inhabitants)

Carsharing Bikesharing E-Scootersharing Ridesharing

Karlsruhe: 3.23 Dusseldorf: 4.84 Bonn: 7.97 Dusseldorf: 0.16
Munich: 2.13 Frankfurt/M.: 4.38 Dusseldorf: 7.47 Hannover: 0.14
Hamburg: 1.61 Berlin: 3.84 Frankfurt/M.: 7.40 Hamburg: 0.12
Berlin: 1.60 Munich: 3.70 Cologne: 7.27 Berlin: 0.08
Freiburg: 1.59 Cologne: 3.65 Essen: 6.52 Munich: 0.06

without. The results for carsharing can be found in Table 2 from which can be seen that
there are no significant differences (p > 0.1) in usage intention between those people living
in cities with a certain level of supply density (0 or 1 car per 1,000 inhabitants). Further
densities have been tested, leading to the same result.

Table 2: Difference in carsharing usage intention between cities with different levels of
supply density

Mean T-test (df = 5) Mean T-test (df = 398)

Supply > 0: 2.77 t = 0.47 Supply ≥ 1: 2.72 t = -0.52
Supply = 0: 2.50 p = 0.66 Supply < 1: 2.79 p = 0.61

Respective results for bikesharing can be found in Table 3. No significant differences in
the means of usage intention can be found between people in cities with and without any
supply. However, testing the means for people living in cities with at least 1 bike per
1,000 inhabitants and the others reveals a significant difference. Those living in cities with
a higher supply density exhibit a lower mean of usage intention than the others with the
result being significant at the 10%-level. Yet, this effect is rather small: A supply above 1
bike per 1,000 inhabitants reveals a usage intention mean of 2.38 and the other group of
2.60. Although statistically significant (p < 0.1) , this in fact has if any rather low real
life impacts.

Looking at the effects of e-scootersharing supply density, the respective tests can be found
in Table 4. In this case, having a supply or not exposes slightly significant differences in
the means of usage intention. In terms of implications, this effect becomes more interesting
for a supply density of above 5: Here, people living in the higher supplied cities exhibit a
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Table 3: Difference in bikesharing usage intention between cities with different levels of
supply density

Mean T-test (df =92) Mean T-test (df = 478)

Supply > 0: 2.45 t = -1.26 Supply ≥ 1: 2.38 t = -1.87
Supply = 0: 2.67 p = 0.21 Supply < 1: 2.60 p = 0.06

mean of 2.53 compared to the other group of only 2.19. As the scale ranges from 1 to
5, this enhances the usage intention at least from below average of the scale above this
threshold. This result might explain the high values in supply density in Table 1. It is
noticeable that suppliers seem to establish numbers above a certain threshold concerning
the supply density. Probably, it requires a certain coverage in order to offer a seamless
service. This might especially be true since e-scooters are probably more likely to be
picked-up and used on the spot rather than in a planned manner. In a next step of
research these numbers will be matched with single suppliers in order to generate further
insights into these density thresholds.

Table 4: Difference in e-scootersharing usage intention between cities with different levels
of supply density

Mean T-test (df =297) Mean T-test (df = 98)

Supply > 0: 2.30 t = 1.68 Supply ≥ 5: 2.53 t = 1.82
Supply = 0: 2.09 p = 0.09 Supply < 5: 2.19 p = 0.07

When analysing ridesharing, significant differences can be found for a supply density level
of above 0.05 vehicles per 1,000 inhabitants and below: Here, the mean for the higher
supplied area is 2.91 whilst that for the other group is 2.72. Again, this difference does not
have major practical implications although it shows that a certain level of supply density
might be necessary for people to be able to imagine the usage of this service. However,
these results have to be interpreted with caution as especially for ridesharing this kind of
supply density might not be the crucial aspect for people to use this service. Here, an
efficient algorithm of dispatching the cars within the city in order to enable short waiting
times and efficient routing might be more relevant. Nevertheless, it can be shown that
people can actually imagine to use this service, even in cities without supply at all (mean
2.73).
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Table 5: Difference in ridesharing usage intention between cities with different levels of
supply density

Mean T-test (df =671) Mean T-test (df = 474)

Supply > 0: 2.86 t = 1.35 Supply ≥ 0.05: 2.91 t = 1.92
Supply = 0: 2.73 p = 0.18 Supply < 0.05: 2.72 p = 0.06

3.2 Regression models

In this section, the estimated logistic regression models for each transport service are
presented and discussed. The models are estimated based on a 70% random sample of
the respective service-specific sub-sample of the overall survey. The remaining 30% of the
sample are used for cross-validation of the respective model. Thus, the sample sizes for
estimating the models are n = 334 for carsharing, n = 340 for bikesharing, n = 369 for
e-scooter- and n = 489 ridesharing. The binary usage intention functions as dependent
variable and the independent variables were chosen according to the respective transport
service. Table 6 summarizes the results. All models passed the Likelihood-ratio-test
against the null-model at highest significance.
As can be seen from Table 6, the service density exhibits a significant effect for ridesharing
only (5.62). The effect is positive, as expected. For the other services, the service density
does not show significant impacts. Age and gender only play significant roles for carsharing
whereas they do not show significant impacts on the usage intention of any of the other
three services. As shown in a large number of previous studies, young males seem to have
a higher usage intention towards carsharing than others. Ridesharing seems to attract
more educated people than the other services. The coefficient for the lower educated
group is negative whilst the coefficient for the higher income group is positive.

Regarding mobility tools and current mobility behavior, it can be seen that car access
has impacts on the usage intention for e-scootersharing. For low (-1.80) and middle
(-1.49) access to a private car, the usage intention is significantly lower than for the base
category, i.e. not having access to a private car at all. Interestingly, in both ridesharing
(0.60) and bikesharing (0.66), holding a transit pass has a positive impact on the decision
whether to intend to use this service or not. For bikesharing, this might be a hint that
this service might be able to function as access- and egress-mode towards the public
transport as it is often discussed. For ridesharing, this might be related to the fact that
ridesharing is basically a more comfortable version of public transport. The vehicles arrive
on-demand and reduce access as well as egress time. The evaluation of the infrastructure
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for car, cycling, public transport, and walking also appear to show significant impacts:
For ridesharing, a more negatively evaluated cycling infrastructure enhances the usage
intention for the service (0.24). This effect holds for the evaluation of public transport
and e-scootersharing as well (0.39). The opposite seems to be true for the walking
infrastructure: The more negative this is evaluated, the lower the usage intention for
e-scootersharing (-0.42). Enjyoing to cycle has a positive effect towards the usage intention
for bikesharing (0.19). Enjoying to walk enhances the usage intention for carsharing (0.31)
but reduces the usage intention for e-scootersharing (-0.30).

In order to evaluate the predictive performance of our models, we plot ROC (receiver
operating characteristic) curves of the cross-validated results (from Table 6) in Figure 1.
The figures as well as the calculated areas under the curve (AUC) show that the models
exhibit good predictive performance. All models show a similar AUC of 0.84 to 0.88.
Thus, the model predicts the outcome to a much higher level of correctness than any
random model would do. This justifies further analyses.
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Table 6: Logistic regression results for car-, bike-, e-scooter-, and ridesharing concerning the usage intention

Variable Carsharing Bikesharing E-Scootersharing Ridesharing
(n = 334) (n = 340) (n = 369) (n = 489)

Intercept -8.18 (1.58) *** -5.67 (1.22) *** -5.79 (1.95) ** -9.65 (1.33) ***
Age -0.02 (0.01) -0.01 (0.01) τ -0.03 (0.02) -0.01 (0.01)
Male 0.78 (0.34) * -0.28 (0.33) -0.38 (0.45) 0.62 (0.28) *
Income low -0.20 (0.38) -0.61 (0.38) -0.87 (0.55) 0.20 (0.35)
Income high -0.83 (0.46) τ -1.03 (0.51) * 0.54 (0.44) τ -0.02 (0.43)
Education low 0.39 (0.41) -0.12 (0.44) -0.18 (0.60) -0.17 (0.36)
Education high 0.90 (0.41) * 0.20 (0.40) 0.05 (0.53) 0.98 (0.35) **
Driver’s license / -0.05 (0.49) -0.48 (0.60) -0.01 (0.41)
Car access low -0.16 (0.56) 0.66 (0.52) -1.80 (0.69) ** 0.35 (0.45)
Car access middle 0.03 (0.67) 0.76 (0.66) -1.49 (0.75) * 0.31 (0.56)
Car access high 0.86 (0.81) 0.69 (0.60) 1.02 (0.77) 0.10 (0.56)
Transit pass 0.52 (0.35) 0.66 (0.35) τ -0.72 (0.59) 0.60 (0.30) *
Service density -0.08 (0.24) 0.02 (0.11) 0.09 (0.09) 5.62 (2.71) *
Environmetalism -0.17 (0.13) -0.17 (0.14) 0.13 (0.18) 0.09 (0.12)
Attitude service 1.33 (0.16) *** 1.12 (0.15) *** 2.10 (0.29) *** 1.50 (0.15) ***
Enjoy walking 0.31 (0.13) * / -0.30 (0.16) τ -0.12 (0.09)
Enjoy cycling / 0.19 (0.09) * / 0.11 (0.07)
Evaluation car infrastructure / / / -0.15 (0.12)
Evaluation cycling infrastructure / / / 0.24 (0.12) *
Evaluation public transport / / 0.39 (0.18) * /
Evaluation walking infrastructure / / -0.42 (0.25) τ /
AIC 281.33 289.83 187.03 376.68
LLR χ2 181.29 *** 159.23 *** 232.23 *** 295.56 ***
Variables denoted with "/" were not included in this model. Standard errors are in parentheses.
p < 0.001 ***, p < 0.01 **, p < 0.05 *, p < 0.10 τ
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3.3 Simulated predictions of usage intention

Drawing on the models fitted and cross-validated in Section 3.2, the following analyses
are based on simulations of the respective coefficients of these models. In doing so,
we particularly integrate estimation uncertainty and calculate predicted probabilities.
Therefore, a multivariate normal distribution around the estimated coefficients as means
(with respective estimated standard error) is set up. We draw 1,500 times from this
distribution. For these simulations, the complete service-specific sub-sample of the survey
is applied. Estimating the probability for usage intention for each of the services based on
an average case of each sample gives the results shown in Figure 2. The x-axis shows the
probability for the usage intention whilst the y-axis shows the absolute frequency of each
predicted probability. All services but e-scootersharing exhibit predicted probabilities for
usage intention of around 0.3-0.35. E-scootersharing is below this value with 0.24. Hence,
the predicted probability of intending to use the service is one quarter to one third for
all transport services studied. The 95% confidence interval around the mean shows how
much the predicted probabilities fluctuate. The confidence intervals are rather small.

In order to gain a broader knowledge about the current transport behavior with respect
to the predicted usage intention probabilities, these are depicted in Figure 3. For car- and
e-scootersharing, we assess differences of people enjoying to walk and people not enjoying
to walk. For bikesharing, the differentiation is made based on whether people enjoy to
cycle or not. For ridesharing, the difference is based on whether people hold a transit pass
for public transport or not. In doing so, we want to find out how these mobility behavior
patterns affect the predicted usage intention for the urban population in Germany. By
that, potential implications for transport planning can be drawn. For all these groups
of comparison, first differences are calculated to see how these "transport backgrounds"
impact the usage intention for the four services.

For carsharing, this first difference (difference of value for scale-point = 1 to scale-point =
7) is negative on the 95% significance level. For e-scootersharing, it is not. However, more
interestingly, the differences show different signs: For carsharing, people enjoying to go
by foot exhibit a higher predicted probability to use carsharing than those not enjoying
to walk. The opposite holds true for e-scootersharing: Here, people enjoying to walk
show a lower predicted probability to intend to use this service than those people not
enjoying to walk. For bikesharing, people who enjoy cycling exhibit a significantly higher
intention to use this service than people not enjoying to cycle. In the case of ridesharing,
it can be seen that people holding a transit pass exhibit a higher predicted probability for
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Figure 1: Cross-validation of logistic regression models.
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intending to use the service than people not holding a transit pass (difference of value for
not holding a transit pass to holding a transit pass).

As can be seen from these analyses, current transport behavior affects the different
transport services rather differently, which underlines the importance to thoroughly
research each service on its own rather than trying to analyse them as "one" shared
mobility.
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Figure 2: Simulated predicted probabilities for average case (solid lines indicate the mean,
dashed lines the mean +/- standard error).
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Figure 3: First differences of usage intention for specific current transport behavior (solid
lines indicate the mean, dashed lines the mean +/- standard error).
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From Figure 4 predicted probabilities of selected variables can be obtained by each point
on the respective measurement scale. The variables are selected based on the regression
results in Table 6. As shown for carsharing previously, with increasing pleasure for going
by foot, the predicted probability for carsharing also increases. For bikesharing, it can be
seen that holding a transit pass enhances the predicted probability for the usage intention
(0.33 compared to 0.27). Although a rather small effect, this difference is significant at
the 10%-level. As discussed above, this might be a hint towards the integrating effect of
bikesharing for public transport services. E-scootersharing is predicted to show higher
usage intention values with more negative evaluations of public transport. This could be
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Figure 4: Predicted usage intention for selected variables.
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interpreted as the e-scooters to fill time- and spatial-related supply gaps in the public
transport system for which the e-scooter might be a good and easy to access alternative.
In the case of ridesharing, the predicted usage intention increases with a more negative
evaluation of the cycling infrastructure. Here, ridesharing might be the comfortable
alternative to cycling if roads are not safe or no bike lanes exist.
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4 Conclusion

This paper investigates the effect of supply densities of shared transport services as well
as people’s current transport behavior towards the usage intention for the four shared
transport services car-, bike-, e-scooter-, and ridesharing. It is found that the supply
density per se does not significantly impact the usage intention or predicted probability
therefore. Thus, simply increasing the supply of shared mobility does not lead to increasing
user numbers or usage intensities. However, it is found that current transport behavior
patterns such as whether a person enjoys walking or cycling, does influence the predicted
probabilities for usage intention. Moreover, it can be shown that the existing infrastructure
for cycling, public transport, and walking triggers potential usage intention. Furthermore,
it can be shown that the models applied within this paper are well-suited to predict the
usage intention for the respective service. For an average case in the data set the predicted
probability for intending to use one of the services ranges between one quarter and one
third. This is by far more than current transport data reveal about actual usage of these
services. This survey is limited by asking for usage intention, which is only one first step
towards actually using the service. Moreover, the analyses are limited by calculating the
service densities based on the total population of the cities. However, the service areas are
often smaller than the city areas which might lead to distorted service densities for the
actual usage within the city. In future studies, the effects of the variables shown here will
be evaluated in more detail. Especially, the prediction models are to be developed in more
detail in order to be able to generate higher prediction rates. Furthermore, the prediction
models will be applied to bigger transport behavior data sets in Germany such as the
"Mobilität in Deutschland" or "Mobilitätspanel". In another future step of research, it will
be analysed which attributes are most important for mode choice amongst the services
studied here. Therefor, this paper serves as a basis.
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