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Abstract

Passively collected datasets of mobile phone traces are increasingly used for the generation
of transportation models. Datasets can contain more than 2000 location events per person
per day and can observe hundreds of thousands of participants with no response burden.
Hence, such datasets are very attractive for transport modelling, particularly on a regional
level. However, privacy regulations make accessing, working with, and sharing such data
challenging. We propose an approach for the generation of open, synthetic mobile phone
traces, based on a small sample of network traces, information on the location of the
network antennas, and activity patterns from a MATSim scenario. Such datasets will
allow for better collaboration between researchers on the development of new algorithms
for extracting travel plans and other indicators. Previous approaches only generated
synthetic traces for CDR (Call detail record) data, which contains many less data points
than traces from 3G and 4G networks. The method accommodates different network types
(GSM, 3G, 4G etc), and the introduction of important data artefacts such as pinging and
loss of reception. Using the proposed method, a the first steps towards a synthetic network
trace dataset for Switzerland calibrated from Austrian network traces is presented.
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1 Introduction

Passively collected data from mobile phone networks has allowed mobility research on a
scale that was unprecedented a decade ago. Previously, the main data sources for transport
models were traffic counts, travel diaries or small samples of GPS data. Traffic counts
(excluding number plate recognition) is link-based and not person-based, while travel
diaries are expensive and time consuming to conduct, as are GPS surveys. Network traces
- also known as Call Detail Records (CDR) - can be collected for millions of unsuspecting
persons over a period of time, giving a low resolution picture of mobility patterns within a
ciy, region or country. Blondel et al. (2015) reported that market penetration had reached
128% in the developed work, and 90% in developing countries. However, the revealing
nature of these datasets means that they can normally not be shared openly, even when
anonymised. The first mobile phone datasets only recorded a rough location for each
phone call or SMS, with between 2 and 6 location points per day. More recently, with
the advent of mobile internet and low-range 4/5G antennae, the resolution of CDR data
can be as low as 50m in urban areas, with thousands of data points per person per day.
This opens up new applications for CDR data, but reduces the likelyhood even further
that such data will be made publicly available. As such, there is a need for methods to
generate open CDR datasets that allow collaboration and open research.

2 Related Work

2.1 Mobile data in research

The use of moible phone data is increasingly seen in different research areas in recent years.
However they also emphasise the difficulties in collaboratively working with such data.
Focusing on the mobility space, Gonzalez et al. (2008) using CDR data to fit a power law
to human mobility patterns for 100,000 individuals over a six-month period, showing that
human trajectories show a high degree of both temporal and spatial regularity. Janzen
et al. (2018) examined long distance travel behaviour using mobile billing data (CDRs)
in France, showing that travel surveys can under-represent the number of long distance
trips by a factor of 2. Furthermore, approaches for generating OD-matrices for transport
planning from CDR data are well estabilised (Alexander et al., 2015; Calabrese et al.,
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2011; Friedrich et al., 2010)

Most of these papers rely on mobile billing data in their work. In such data, each row
repsents a call or sms, along with the timestamp and location. The location can either be
a cell tower or a more accurate estimated location. For analysising social networks and
communities, sometimes the Id of the receiving party is also included. More recently, the
surge in mobile internet usage and move towards internet based services such as Whatsapp
and Facebook messenger has led to a decline in the use of analog voice-calling and SMS, but
a massive increase in the number of data points collected per day by the network operators.
Work using high frequency network trace data is much less common. Nachbagauer et al.
(2012) modelled traffic volume using cellular network data (CNA) rather than CDRs.
Also in Austria, Horn et al. (2014) improved the approach by developing a method to
remove outliers in data. Cik et al. (2020) used the same datasets as this paper to develop
methods for trip purpose imputation on cellular network data.

2.2 Privacy and Anonyminity

Mobile phone traces are passively collected data on the network operator side, from
the interactions between a person’s device and the communications network. As such,
even more so that other location-based datasets, their use is strictly regulated, in part
by the GDPR (de Montjoye et al., 2018). The data can often only be accessed on-site
at the network operator, and sharing of the data is often forbidden. Firstly, this goes
against the emerging principles of open research, where the data behind the science is
made available, and limits the opportunities to reproduce and validate the results of
colleagues. Secondly, it restricts the advancement of methods for processing mobile trace
data, including the development of methods for both cleaning and verifying the data.
While it is understandable that each operator will develop their own proprietary algorithms
to process the raw signalling data into location data, accepted methods for evaluating the
data for systematic errors are few and far between.

Naturally, CNA datasets cannot simply be made public, and research has shown that
even strict anonymisation procedures struggle to remove all identifying features from
the dataset (de Montjoye et al., 2013). As such, this paper proposes an approach for
generating a synthetic CNA that can be used to support open collaboration and further
research in the field when using such data.
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2.3 Mobile data for Covid-19 research

More recently, mobile phone data has been an important data source for governments
around the world to monitor the both the spread of Covid-19 and the adherence to
lockdown measures (Oliver et al., 2020). With concerns about the privacy implications
of such a use of mobile phone data, the European Union has released guidelines for the
use of mobile phone data during the pandemic, indicating the importance of privacy
considerations when working with such data (European Data Protection Board, 2020).

2.4 MATSim and the Switzerland scenario

This paper uses the Agent-based simulation framework MATSim (Horni et al., 2016) to
generate a synthetic mobile-phone dataset. Agent based frameworks are uniquely suited
to this task, as a population is represented by a set of agents who move about, performing
activities at certain locations. The combination of a population, the transport network,
and other components such as public transport schedule, is called a scenario. Traditionally,
these scenarios were generated from travel diaries and calibrated against traffic counts
(Balmer et al., 2008). One particular scenario is the MATSim Switzerland scenario (Bösch
et al., 2016; Hörl and Balac, 2020) which we use in this paper.

2.5 Generating MATSim scenarios from CDR Data

CDR data has also been used to create Scenarios for transport modelling MATSim. Anda
et al. (2018) generated hourly-aggregated OD matrices from mobile phone data and used
them to build a large-scale scenario for Singapore, while sidestepping the privacy challenges
by using OD Matrices as the input. Yin et al. (2017) used machine learning methods to
generate synthetic activity chains and integrated them into the MATSim framework to
create a scenario for the San Francisco Bay Area. Bassolas et al. (2019) used CDRs to
generate a scenario for Barcelona, using the trace data itself, rather than aggregated OD
Matrices.
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2.6 Earlier attempts at synthetic CDR dataset generation

While much work has focused on generating matsim scenarios from mobile network data,
to date, Zilske and Nagel (2014) is the only work to investigate building a mobile phone
usage model on top of matsim to generate artificial traces. They divide the study area
into antenna cells and generate synthetic CDRs for the agents in the simulation based on
a call rate. The output of the CDR generation is pi, ti, ci) where pi is a person identifier,
ti a timestamp, and ci a cell. However, more recently, the number overlapping cells and
the ubiquitousness of mobile internet usage, especially on 4G and soon 5G networks
means that there are many overlapping antenna cells, limiting the usefulness of a antenna
cell-based approach. Zilske et al. test their approach with a uniform call rate throughout
the day, at the rate λ. In a congested MATSim Berlin scenario, they reproduce 95% of
the total travelled distance with 50 network trace points per day. However, they assign a
network tower to every link, which is unrealistic. In reality, there will be multiple towers
overlapping multiple links and significant spatial differences in network coverage. Artifacts
in the data such as pinging behaviour between antennae are also not considered.

3 Input datasets

As introduced in Section 1, mobile network operators can geolocate a device on their
network using triangulation to the antenna or antennae to which the device is connected.
As such, to generate an appropriate synthetic dataset, the location of the cell towers and
their approximate strength is needed, as well a model of the trace behaviour - in particular
positioning accuracy and signalling rate.

For this paper, due to restrictions on access to an appropriate dataset in Switzerland,
data was kindly made available from a major network provider in Austria, accessed
only on-site at the Technical University of Graz. Austria has a similar mountainous
geography, comparable population size and network of smaller cities with good transport
links to Switzerland, making such a dataset appropriate for developing transmission model
transferable to Switzerland and other alpen European areas.
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3.1 Austrian Datasets

Two Austrian datasets were made available for developing this synthetic network trace
approach. In the first, GPS and CNA data were collected simultaneously from 8 devices
attached to service personnel working for the telecom provider, who travelled widely
around Austria. This included two persons carrying backpacks, 5 with a car, and one
on the rail network. These devices collected a total of 903,992 GPS points and 368,209
mobile trace locations, covering 10 overlapping days.

The second dataset consists of a complete month of anonymised mobile network traces for
approximately 3 million persons in October 2017. The unique identifiers are randomised
each day, meaning that a single person cannot be tracked over multiple days. This dataset
does not have accompanying GPS traces, with which to determine the accuracy of the
traces.

In both datasets the locations recorded from the mobile network are estimated using the
same proprietory algorithm, based on the recorded interactions with the network antennas
and the detected transmission delay between the antenna and the device, along with
information about the direction and power of the antenna.

3.2 Swiss network trace sample

A small sample of network trace data was provided by a network operator in Switzerland
for one unspecified day. It is in similar format to the second larger Austrian dataset.

3.3 Cell Tower dataset

The OpenCellid project is a open data project to collect the locations of cell towers
(antenne) all around the world, along with thier estimated range. It is a crowd sourced
project, which is mainly used for geolocating devices without using GPS and monitoring
mobile provider coverage. The tower locations are estimated based on the reported data
from millions of users. The dataset includes records for all towers observed by collaborators
of the project over a period spanning the last 14 years. Hence, only LTE and UMTS (3G)
towers which were not observed in the last 3 years were excluded. Additionally, towers
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and have less than 10 observations for LTE and 20 observations for 3G were respectively
excluded.

The Federal Office of Communications in Switzerland makes the locations of all mobile
phone atennas public avaible as open data for all network providers. Hence, as an official
datasource, it will be used instead of the opencellID project as the antenna locations in
generating the simulated dataset. As it is extremely rare to work with network traces
from multiple network providers simultaneously, we select only those cell tower locations
from the largest telecom provider in Switzerland, Swisscom, which has has around 60%
market share.

3.4 Terminology

There is a need to clarify the distinction between these types of data. CDRs include
additional information on the duration of the call or receiver, but have a lower temporal
resolution. CNA datasets, on the other-hand, are records of the individual interactions
of the mobile device with the communication network. The spatial resolution between
datasets can also vary greatly, depending on whether the cell tower location is used for
the position, or if triangulation and sector information is used to improve the accuracy.
Especially as network operators move towards 5G networks, mobile data datasets will start
to resemble low resolution GPS datasets moreso than CDR data, hence the importance of
the distinction between classic CDRs and CNA.

Additionally, out of necessity we refer to two types of events - MATSim events generated
by agents in the MATSim scenario, and network events - single records in a CNA dataset
representing an interaction between a mobile device and the communication network. To
avoid confusion they will be referred to as agent-events and network-events respectively.

4 Methodology

In this section, we present an approach to generate a model of mobile phone data behaviour
from real mobile phone data, which can be overlaid on a MATSim simulation to generate
a synthetic dataset that replicates the important features of the original data. There are a
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few key variables that need to be replicated. ∆Ti,t, the time delay since the previous event
Ti,x,t−1 and the current network-event Tt at time t for a particular person i and location
x is the vector representing the location. The location accuracy can be represented by l̂,
where x is adjusted by an error ε taken from the spatially dependent distribution f(x) of
the errors in the original data.

From experience working with CNA datasets from different countries, it is clear that
each network operator uses different methods to generate CNA data from the network
interactions of the mobile phone users. Rarely is the raw signaling data provided. Instead,
the data is pre-processed to either a periodic location estimate, or a trip-stay based
structure, similar to that of a travel diary. Hence, in this work, a method for generating
raw signaling traces is presented, where the output can be further processed to replicate
the expected output of the network provider. In the Austrian case above, this would be a
grid-based location estimate on a 50x50m resolution at 15 minute intervals.

4.1 Signally dependant location accuracy

Using the combined GPS-CNA dataset, the location accuracy was determined for a
1kmx1km grid covering Austria, taking the GPS location as the approximate ground-truth.
Since the GPS-events and network events were not simultaneous - the true location of
a network-event in the CNA dataset is calculated as distance to the temporally closest
GPS point from the same device, within a 5 second interval. Values where the GPS or
mobile data point occur outside of Austria are excluded. Cells where there were less than
10 accuracy observations were removed.

This gives accuracy measurements for only 2.6% of the Austrian surface area, but 38.1% of
the population. As such it was determined that a aggregated raster grid was not required.
The average location error for a 1km grid covering Austria is shown in Figure 1. As
can be seen in the map, values are generally only available for urban areas and those
along main road arterials. A visual inspection of Fig. 2 shows that the distribution of the
accuracy measurements are roughly log-normally distributed, with outliers above 10km.
The accuracy is also clearly for different urbanity classifications, which we will aim to
capture in the model.
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Figure 1: Measured mean location accuracy of the Austrian CNA dataset

4.2 Predictive Model

A predictive model of the mean location accuracy in each cell is constructed as log linear
regression. To control for spatial auto-correlation present in the data, simultaneous
autoregressive error approach is applied, which assumes that the response variable is a
function of both the explanatory variables and the neighbouring locations (Kissling and
Carl, 2008; LeSage, 2008), where spatial dependence in the error terms is accounted for.
Two model types are used, a spatial error model (SEM), specified as:

8



Synthetic mobile phone datasets

Figure 2: Distribution of accuracy measures for all of Austria for the CNA dataset

y = Xβ + u, u = λWu+ ε

where W is the spatial weights matrix of the neighbours and u are the observed errors.
Additionally, we also estimate a spatial Durbin error model (SDEM), which includes
exogenous interaction effects as θ in the model. (LeSage, 2008),

y = Xβ +WZθ + u, u = λWu+ ε

In setting up the input data, the value of each cell was weighted by the number of
observations, to add more weight to those with more measurements. To prevent negative
accuracy measurements, the dependent variable (accuracy in meters) is log transformed.

In model P, only population and the number of cell towers in range was considered. Both
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log transformed. Interestingly, the coefficient for the tower count is positive. Even though
more towers should lead to better triangulation, when more towers are visible to the
device, some of these towers are likely to be high-powered long range antennae, which
don’t aid the triangulation and give a poor location estimation. The model PU includes
the European urban codes, which are available on a municipality level,and assigned to the
1km x 1km grid. These are:

• (1) Densely populated area (cities/urban centres/urban areas)
• (2) Intermediate density area (towns, suburbs)
• (3) Thinly-populated area (rural area)

Although these are calculated from the same population density values used for log(population),
they improve the model fit in model PU. As expected, the coefficients indicate that the
location accuracy improves in the suburbs, and best in urban centers.

In a third model, PUT, the distance to the nearest cell tower (in meters) was included.
This was sound to be highly significant, and improved model fit, reducing the AIC by
16 units. The number of towers within range was also tested, and neither it or its log
transformation was found not to be significant for any of the above models.

Finally a model with spatial lags on all variables (PUT-SDEM) was estimated, which
improved the model fit further. The lag coefficients are significant for log(population)

but not for the urban codes. Interestingly, in the SDEM model, the introduction of the
lag coefficients reduces the significance of the urban code coefficients. This reduction
is stronger for highly urbanised areas, like due to the stronger spatial correlations in
population in these ares. The lag coefficient for dist_to_tower was also highly significant.
The Wald and Likelihood-ratio tests were significant at the p<0.01 level for all models.

A Monte-Carlo test of Moran’s I on the residuals gives a p-value of 0.998, indicating that
the spatial correlations in the residuals are no longer significant. The prediction accuracy
for Austria is presented in Fig. 3. As expected, we see a better accuracy in city centers,
and the accuracy values are reasonable, even where the population count provided by the
data is 0.
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Table 1: Spatial regression results

Dependent variable:

log(location_accuracy)
P PU PUT PUT-SDEM

(1) (2) (3) (4)

constant 8.134∗∗∗ 8.297∗∗∗ 8.201∗∗∗ 8.725∗∗∗
(0.064) (0.065) (0.071) (0.099)

log(population) −0.120∗∗∗ −0.093∗∗∗ −0.088∗∗∗ −0.091∗∗∗
(0.008) (0.008) (0.009) (0.009)

urban_code = 1 −0.896∗∗∗ −0.861∗∗∗ −0.525∗∗∗
(0.081) (0.082) (0.132)

urban_code = 2 −0.421∗∗∗ −0.398∗∗∗ −0.228∗∗∗
(0.059) (0.059) (0.066)

dist_to_tower(km) 0.205∗∗∗ 0.156∗∗
(0.060) (0.061)

lag(log(population)) −0.087∗∗∗
(0.014)

lag(urban_code = 1) −0.120
(0.162)

lag(urban_code = 2) −0.263∗∗∗
(0.090)

lag(dist_to_tower) −0.186∗∗
(0.090)

λ 0.66 0.64 0.64 0.64
Model Type SEM SEM SEM SDEM
Observations 4,456 4,453 4,453 4,453
Log Likelihood −7,878.980 −7,811.046 −7,805.295 −7,769.351
σ2 51.157 50.359 50.248 49.327
Akaike Inf. Crit. 15,765.960 15,634.090 15,624.590 15,560.700
Wald Test (df = 1) 5,048.554∗∗∗ 4,512.834∗∗∗ 4,497.601∗∗∗ 4,597.204∗∗∗
LR Test (df = 1) 2,342.888∗∗∗ 2,250.927∗∗∗ 2,246.324∗∗∗ 2,296.528∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3 Transferring the spatial model to Switzerland

The urban codes are also available on the municipality level for Switzerland using the
same EU methodology. These were assigned in the same way to the 1km grid as was done
for the Austrian data. The distance_to_tower variable was calculated in kilometers,
using the set of UMTS and LTE towers in the Swisscom dataset, described in Section 3.3.
The spatial weight matrix was also generated for the 1km grid of Switzerland.
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Figure 3: Predicted mean location accuracy for the model PUT-SDEM

As such, we can reasonably transfer the PUT-SDEM model directly. Fig. 4 shows the
results of the predicted mean accuracy for Switzerland using the PUT-SDEM model. As in
the Austrian predictive model, we see poorer location-accuracy in the central mountainous
axis, and better accuracy in the main cities such as Zurich and Geneva, as one would
expect.

4.4 Replicating realistic signaling patterns

Secondly, a model for the event frequency, ∆Ti,t, needs to be constructed. Figure ?? shows
the average delay between network-events in the second dataset, fitted with a Poisson
distribution. The lambda is ???, indicating a mean of ??? events per day. However, both
temporal and spatial dependencies can be observed. In Fig. 5, the relationship between
∆Ti,t−1 and ∆Ti,t using the Swiss dataset is illustrated. One sees clear clusters here,
indicating the existence of multiple stable states, where the network-event frequency stays
stable over a period of time. As such, one can infer that there are likely periods where
the signaling rate is high for a period of time (i.e. continuous internet usages), and others
where it is low, indicating background activity on the mobile phone. It is important to to
include these patterns in the model, to replicate the variability in signalling activity, which
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Figure 4: Predicted mean location accuracy for the model PUT-SDEM when transferred
to Switzerland

makes the design of robust algorithms (for example those to perform mode or activity
detection) challenging.

4.5 Including artifacts

Mobile phone data has been widely recognised as ‘noisy’ data (Zilske and Nagel, 2014;
Alexander et al., 2015), Primarily this refers the the propensity for the location to ’jump’
around as the mobile device moves between cell towers. This is particularly prominent
when a device switches from a low-powered short-range tower to a stronger long-range one
which naturally gives a much poorer estimate of the location of the device. In particular,
this leads to a phenomena called ‘pinging’, where a device jumps back and forward between
multiple towers in quick succession, giving the impression of movement, even though none
has actually occurred. Since we model the accuracy of the location precision using a
non-parametric distribution, pings as extreme events are already included as generated
network-events where the point accuracy is very poor.
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Figure 5: Temporal signalling patterns for Switzerland

5 Proposed Integration into MATSim

Previous work developed routines for MATSim to generate the synthetic CDR data, based
on a simple lambda parameter, without spatial or temporal parameters in the model
(Zilske and Nagel, 2014). Since the aim here is only to generate a synthetic mobile data
dataset, the routines do not need be integrated into the MATSim simulation itself; it is
enough to process the agent-based behaviour generated as output from the simulation,
recorded as events of the agents.

The module to generate synthetic traces is structured around an implementation of the
event listener interface in MATSim. Each unique mobile phone subscriber is independent,
in that the density of agents in an area does not affect the resulting mobile locating
behaviour. In reality, network operators perform extensive load balancing on their networks
by moving connected devices between antennae to optimise call quality, internet speeds
and power consumption. However, without knowledge of the proprietary algorithms used
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to do so, or even the capacity of each antennae, simulating such processes is infeasible.

5.1 Network-event synthesis algorithm

By default, MATSim simulation steps have 1-second frequency with agent locations
observed at event occurrences, such as activity start and ends, or link entry and exits.
When an agent is stationary, i.e. performing an activity, the location xi,k is known.
However, when the agent is traversing a link, the location and timestamp are only known
when the agent enters or exits a link. In between these events, the location is imputed from
the travel speed (taken as constant) on the link and the timestamp ti,k of the network-event
being generated. When an mobile network event ex,i,t is generated, the delay ∆Ti,k until
the next signaling event is calculated. When t+ ∆Ti,k > t(E), where t(E) is the time at
the current MATSim-event, ∆′Ti,k is calculated as the remainder ∆Ti,k − t(E) and stored
to process the next activity or link traversal.

To accommodate the difference in timescales between the MATSim agent events and the
simulated network events, the network events are computed iteratively for the time period
between the preceding MATSim event Ei,k−1 and the current one, Ei,k. This process is
illustrated in Figure 6.

MATsim events are processed sequentially, but this processed runs concurrently for each
agent in the simulation, with a record being kept of the last event and the current ∆′Ti,k.
Initially, a random ∆′Ti,0 is sampled from the distribution for each participant.

5.2 Other considerations

Each agent in the simulation is assumed to have a single mobile device. To replicate the
over-saturation observed in reality, where many users have more than one device, the
agents in the scenario would simply have to replicated in the MATSim output.
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Figure 6: The network-event generation algorithm. ∆′k is the remaining duration of ∆T
after the MATSim-event Ei

Activity

E1 E2
Leg

E3 E4
Leg

E5 E6

Event output at matsim-event Ei

E2 : { e1, e2, . . . , ek }, Δ'k

E4 : { ek+1, ek+2, . . . , ej }, Δ'j

E6 : { ej+1 }, Δ'm=j+1

E7

location of network-event eie1

ek+1 ej+1

Δ'0

E8 : ....

Δ'k

Δ'j

Δ'm

6 Discussion

There are many factors that influence the localized accuracy of mobile phone positioning,
and these would vary between datasets. Different Network operators may use different
systems, and focus on improving service in certain areas, decisions which are hard
to replicate in such a synthetic dataset without more information from the operator.
Furthermore, geographical and urban features are important. The presence of large bodies
of water or hills and mountains are also known to affect the location accuracy. In urban
areas, skyscrapers and dense urban areas also play a role. Another man-made feature,
which is particularly relevant in Switzerland is the loss of reception when travelling through
a tunnel. This is not included in the model, but could be added to the MATSim module,
deactivating the devices of agents when they enter a tunnel in the network.

While it would be ideal to include many of these features into the model, on a regional
scale, when modelling the location tracking accuracy for a whole country it is more
important to replicate the general spatial patterns, which we have done, and include some
variation in urban areas. We showed that taking a singular accuracy value is not sufficient,
as the location accuracy fits a log-normal distribution. Even for the same location, the
accuracy can vary between 100m and over 10km, depending on the cell tower to which
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the device is connected.

A visual inspection of the Swiss predictive model for location accuracy suggests that
the model is indeed transferable, and would give usable results. However, ideally, the
predictions would be validated against a dataset from the network provider themselves, if
one were made available.

Temporally, there are clear second-order states in the timing delta between network events,
which are also important to replicate. More work needs to be done to see if these patterns
vary among socio-economic groups. This would require a dataset with such information,
or at least a model of mobile-phone use for different socio-economic groups. For example,
one could expect younger persons may be heavier mobile internet users and therefore
generate more network events. Similarly, those who use public transport and can take
advantage of their travel time may generate more network events than cyclists or car
drivers, who need to be in control of their vehicle.

7 Conclusion

This paper showed that it is possible to generate more realistic synthetic datasets of CNA
data using both unanonymised and anonymised data, which can be transferred from one
study area to another. The work identified key spatial and temporal patterns that should
be included in such models. Further work would use such models to develop and test
the methods for working with mobile phone data, where the both the methods and data
used can be shared publicly, and investigate how methods calibrated on such a synthetic
dataset perform on real data from the same study area.
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