
Scheduling of daily activities: an optimization ap-
proach

Janody Pougala

Tim Hillel

Michel Bierlaire

Transport and Mobility Laboratory (EPFL) May 2020

STRC  20th Swiss Transport Research Conference
Monte Verità / Ascona, May 13 – 15, 2020



Scheduling of daily activities: an optimization approach May 2020

Transport and Mobility Laboratory (EPFL)

Scheduling of daily activities: an optimization approach

Janody Pougala, Tim Hillel, Michel Bierlaire
Transport and Mobility Laboratory
Ecole Polytechnique Fédérale de Lausanne
Station 18
1015 Lausanne
phone:
fax:
{janody.pougala,tim.hillel,michel.bierlaire}@epfl.ch

May 2020

Abstract

Transport planners and operators have to face nowadays increasingly saturated networks and
shifts in mobility behaviors driven by societal changes and emerging technologies. Traditional
trip-based models become very limited in terms of behavioral realism when it comes to antici-
pating and accommodating the users’ new, and often hard-to-capture needs. The shift towards
activity-based approaches is thus natural, as this alternative is better equipped to deal with
individual-level granularity (Castiglione et al., 2014). The assumption behind these models is
that all transport-related choices made by a person (e.g. number of trips, location and mode
choice) are derived from the need to do activities (Bowman and Ben-Akiva, 2001), and their
spatiotemporal sequence. We propose a modeling approach based on first principles: a traveler
schedules their activities in order to maximize the total time-dependent utility they can derive
out of them, thus solving a mixed integer optimization problem. The new model generates
distributions of schedules for each individual, from which likely outcomes can be drawn. This
approach enables simultaneous consideration of multiple choice dimensions (e.g. activity, lo-
cation, mode choices). This allows for more flexibility than sequential approaches which tend
to not appropriately represent scheduling trade-offs. The model is tested using trip diary data
from the 2015 Swiss Mobility and Transport Microcensus and a dataset collected by the authors.
The results show that the model can generate realistic activity schedules for a wide range of
individuals.
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1 Introduction

Trip-based models have been for decades the traditional approach to forecast travel demand. In
trip-based analyses, trip purpose, origins and destinations are usually predicted independently,
then paired and assigned to the transport network in subsequent steps. As the interrelations
between these choices are not taken into account, trip-based models are limited when it comes
to aid decision-makers to manage existing networks (Castiglione et al., 2014) or deal with
out-of-the-norm situations that often require an immediate but accurate response. This has
become apparent in the scope of the recent COVID-19 outbreak: in order to enforce efficient
and targeted measures to prevent and/or manage the spread of the virus, it has been essential for
many governments around the world to grasp the complexities of their citizen’s daily mobility
habits, and understand how and why they move. It is in response to the lack of flexibility and
behavioral realism of the trip-based approach that the activity-based stream of transport research
has emerged. The activity-based approach is founded on the assumption that the demand for
travel is induced by the need to perform activities. Contrary to trip-based models, activity-based
models (ABM), consider the correlations between an individual’s mobility choices. In addition,
these models allow to understand mobility behaviors in wider social and environmental contexts,
by taking into account interactions such as the influence of the household or the social circle, or
model decisions that are driven by routine or subjective preferences rather than a hypothetical
rationality. Ideally, the information obtained from activity-based models would represent a
complete image of an individual’s mobility and the multiple ways they are affected by and
interact with their physical and social environment.

There have been many contributions focused on activity-based modeling in the transportation
field, including examples of fully-functioning models that have been successfully implemented
in practice. A review of these works can be found in Section 2. Authors have pointed out that
current ABM do not quite fulfil all their promises yet (e.g. Axhausen (2000)), and several models
fall back upon simplifying assumptions that significantly decrease the quality of the predictions.
The approach presented in this paper attempts to reintroduce a high degree of behavioral realism
by basing the modelling framework on first principles that are easily generalizable. The decision
process is modelled as a mixed integer optimization problem. Individuals schedule their days by
attempting to maximize the utility generated by the chosen sequence of activities, constrained
by their available time and, more importantly, their preferences in terms of timing and locations.
The framework and simulation process are presented in Section 3. Finally, results from an
empirical investigation are shown and discussed in Section 4.

1



Scheduling of daily activities: an optimization approach May 2020

2 Literature review

Activity-based models aim to be behaviorally realistic by considering that the need to do
activities drives the travel demand in space and time (Hägerstraand, 1970, Axhausen and Gärling,

1992, Kitamura, 1988). ABM consider mobility as multidimensional systems instead of single
observations: models focus on overall behavioral patterns instead of discrete trips, decisions
are analysed at the level of the household as opposed to isolated individuals, and dependences
between events are taken into account (Timmermans, 2003, Pas, 1985).

Two main research streams have emerged within the scope of ABM. On one hand, utility-based
models rely on the assumption that individuals maximize the utility they gain from performing
activities. These models, such as Bowman and Ben-Akiva (2001), Adler and Ben-Akiva (1979),
extend the traditional trip analysis by considering chains of trips (or tours). Mobility behaviour
is thus modelled as a series of discrete choices, treated sequentially, solved with econometric
methods such as advanced discrete choice models (Bowman and Ben-Akiva, 2001, Wang and
Timmermans, 2000, Nurul Habib and Miller, 2009) or with micro-simulations (e.g. STARCHILD
(Recker et al., 1986), SMASH (Ettema et al., 2000) CEMDAP (Bhat et al., 2004), FAMOS
(Pendyala et al., 2005)). On the other hand, rule-based or computational process models such
as Golledge et al. (1994), Arentze and Timmermans (2000) are based on the assumption that
decision-makers are not driven by the desire to obtain optimal solutions, but rather consider
context-dependent heuristics and conditional rules to make decisions (Timmermans, 2003).

Both approaches present a certain number of shortcomings. Rule-based models are mostly
based on empirical analysis and lack a theoretical foundation to generalize them (Joh, 2004) and
require extensive amounts of data to derive reliable if-then conditions. Econometric models tend
to not consider behaviour itself, but rather assume it implicit to the full process (Timmermans,

2003), and they often need to be significantly simplified in order to be estimated.

The framework presented in this paper falls within the utility-based side of research. The novelty
of the approach is that the output of the model is not a deterministic schedule, but rather a
distribution of schedules for each given individual from which we are able to draw possible
outcomes. A layer of randomness is thus included, allowing more flexibility in terms of modeling
of behavior compared to the existing literature.
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3 Integrated framework

We propose an utility-based mixed integer optimization model to generate individual schedules
given a set of activities. We present in this section the core elements of our framework, and
define all fundamental concepts and assumptions.

3.1 Definitions

We introduce the following definitions:

1. Time: we assume time to be discretized in δ time blocks of equal length, with T the time
horizon (e.g. T = 24h),

2. Space: space is discretized in a finite set of locations L. Each location is associated to at
least one activity.

3. Activity: an activity i is uniquely defined as an action taking place in a physical location
l, having a start time xi and a duration τi. The sequence of activities {i, i + 1} generates a
trip from location li to li+1, that can be performed using mode m. An activity than can be
performed at multiple locations, or reached with different modes is modelled as multiple
unique activities. For each individual n, we consider four possible sets of activities:

a) Feasible set F n: all possible activities available to the individual n within a given
time frame. This time frame may be larger than the time budget. For instance,
for a daily scheduling process, the feasible set includes all activities that could be
performed during the week, month, etc.,

b) Considered set Cn: all activities that the individual n considers performing within
their time budget. For example, given a list of activities to be performed in a week,
the considered set includes activities that the individual plans to do in a given day.
We let Cn ⊆ F n,

c) Scheduled set Sn: all activities the individual n schedules for a given day, based on
the set (or agenda) they had previously considered. We let Sn ⊆ Cn,

d) Realized set Rn: all activities actually performed by the individual n within their time
budget. Given that the realized set is built from the scheduled set through external
operations such as deletion, addition or substitution or activities, Rn and Cn could be
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distinct.

Only the considered and scheduled set are in the scope of our research.

3.2 First principles

The main assumption of the model is that scheduling a daily activity and mobility plan is a
universal task. While the thought process involved in the generation of said schedule remains
specific to the individual, we postulate that certain principles can be generalized to the whole
population to explain the scheduling behavior. We consider the following axioms, introduced in
the early works of Becker (1965) and Recker and Root (1981).

1. An individual n formulates an activity plan within a bounded timeframe (e.g. a day),
referred to as time budget.

2. Each considered activity i ∈ Cn is associated with a utility Uin, which quantifies the satis-
faction derived by the individual when they perform the activity. Intuitively, we assume
Uin to be time-dependent, as the gain of utility is not uniform across the distribution of
durations and time-of-day decisions. For instance, one might enjoy working out for a
given duration - but this satisfaction will decrease the longer the duration extends past this
threshold, or, conversely, if they are unable to work out for a sufficient amount of time.
Similarly, the same activity can yield different utilities depending on its time-of-day start
(e.g. starting work on time vs. late, or running errands in the morning vs. in the evening).
These observations rely on an important assumption: each individual n is time-sensitive,
and they have quantifiable preferences for the timing of each activity (start, end, and/or
duration).

3. The scheduling process itself is assumed to be driven by the desire to maximize the total
satisfaction, or utility, provided by the activities subject to the given time budget constraint.
Taking into account the timing preferences mentioned in item 2, we expect all schedule
deviations (i.e. differences between what can be scheduled given the constraints and what
they would rather do) to decrease the utility, with a rate that depends on the individual and
their own flexibility towards activity i.
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3.3 Utility functions

The central element of our framework is the utility Uin of performing activity i by the individual
n. As expressed in Equation 1, the utility function is the sum of five main components:

Uin = Uconst,in + Utiming,in + Uduration,in + Utt,in + εin (1)

• A constant utility of activity participation Uconst,in. Assuming this constant to be zero for
all in-home activities, it represents the preference of performing the activity rather than
staying at home, all other things being equal.

• Two terms Utiming,in,Uduration,in which capture the (a priori negative) impact of schedule
deviations on the total utility. Contrasting with Feil (2010), that only considers the
disutility of being late to an activity, these terms express deviations in terms of both start
time (early/late) and duration (too long/too short) respectively. They penalize divergences
from the preferred schedule, to an intensity depending on the indivual’s flexibility.

• A term Utt,in which represents the utility of traveling to the location of the activity. Intu-
itively, this term has a negative impact on the total utility.

• A stochastic term ε,in, defined as a sum of error components associated to specific values
of the decision variables.

Utility of schedule deviations

1. Flexible: deviations from preferences for activity i are relatively unimportant, thus are
less or not penalized.

2. Moderately flexible: deviations from preferences are moderately undesirable, and so are
more penalized than in the flexible case.

3. Not flexible: deviations from preferences are not strongly undesirable, and are conse-
quently highly penalized.

The impact of the three levels of flexibility on the penalization of schedule deviations is illustrated
in Figure 1.These penalties may not be symmetrical, and it is necessary to define how one
perceives a type schedule deviation in relation to the others. Intuitively, one can postulate that
individuals do not penalize equally arriving early vs. late to the same activity, regardless of their
flexibility. For start times, this observation is confirmed by studies on departure time preferences
(Small, 1982, Arnott et al., 1987). Fewer studies exist on the deviation from the optimal duration
of an activity (usually the individual’s preferred duration, but could be constrained by other
factors such as the required daily working hours), however, several authors have identified
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possible frustration and satiation effects. (Ettema et al., 2007)

In the early stages of the model, the values associated to each flexibility category are not specific
to the individual. For example, all persons declaring to be flexible for any activity will penalize
deviations in the same way. The model can thus account for priorities between different activities,
which is analogous to the traditional classification of activities encountered in the literature (e.g.
mandatory, maintenance and discretionary, and other similar categorizations) (Castiglione et al.,

2014), but this hierarchy is uniform across the population.

Figure 1: Impact of start time deviation on utility for different flexibilities

Equation 2 defines the impact on the utility of a deviation in regards to start time. When the
activity is scheduled earlier than the desired time (i.e. x∗in − xin > 0), the deviation is penalized
through the term Uearly,in, while Ulate,in = 0. On the other hand, if the activity is scheduled later
than preferred (i.e. x∗in − xin < 0), the deviation is penalized through Ulate,in, while Uearly,in = 0. If
the scheduled start time is equal to the desired time (i.e. x∗in − xin = 0), the utilty is not penalized.
The same logic is applied to the scheduled duration, as defined by equation 3.

Utiming,in = Uearly,in + Ulate,in

= θek max
(
0; x∗in − xin

)
+ θlk max

(
0; xin − x∗in

)
(2)

Uduration,in = Ushort,in + Ulong,in

= θdsk max
(
0; τ∗in − τin

)
+ θdlk max

(
0; τin − τ

∗
in
)

(3)
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Utility of travel

At this stage of the model, we consider the simplest definition of the utility generated by traveling:
a linear function of the travel time t. As defined in section 3.1, each activity i is defined by a
unique location li, and can be reached from the location of the previous activity li−1 by traveling
with mode mi. We assume that the impact of traveling on the utility of the activity is negative,
meaning that an activity with a longer travel component will be regarded less favorably than an
activity requiring a shorter travel time. We name θti the penalty associated with traveling, and
we consider it equal across individuals.

Uttin = θtit (li−1, li,mi) (4)

This formulation can be easily extended to include additional features such as network-specific
attributes (e.g. level of service).

Error components

We assume that each specific value k of a decision variable y in our optimization problem (see
section 3.4) has a corresponding error component, and that the total stochastic term for an
activity is their sum (Eq. 5). This specification defines a choice model equivalent to an error
component mixed logit model (Train, 2003).

εin =
∑
y∈Y

∑
k∈Ky

δk
iyε

y
k + ξin (5)

with Y the set of decision variables, Ky the set of possible values for decision variable y, δk
iy an

indicator variable equal to 1 if value k was chosen for decision variable y. We assume that the
error components εy

k follow a multivariate normal distribution with a known correlation structure
Σ. ξin is an i.i.d. error term specific to the individual n, such that ξin ∼ EV(0, µ).

This error structure allows to take into account the very high correlations between different
alternatives (e.g. in real life, there would likely be little perceived difference between a duration
of 5 minutes and 6 minutes). Note that the number of unique components k for the errors of the
timing decisions (start time and duration) is not necessarily equal to the chosen time discretization
δ (as defined in Section 3.1). It could be beneficial from a computational perspective to choose
low values of k, and increase them progressively to reach a tradeoff between quality of results
and performance. The same conclusion can be made in the case where time is continuous,
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although the sums would be replaced by integrals.

Total utility function

Replacing (2), (3), (4) and (5) into (1) yields the total time-dependent utility function for activity
i performed by individual n:

Uin = cin + θek max
(
0; x∗in − xin

)
+ θlk max

(
0; xin − x∗in

)
+ θdsk max

(
0; τ∗in − τin

)
+ θdlk max

(
0; τin − τ

∗
in
)

+ θtitt (li−1, li,mi) +
∑
y∈Y

∑
k∈Ky

δk
iyε

y
k + ξin (6)

3.4 Mixed integer optimization framework

We model a person n with a set of activities Cn and a time budget T , who schedules all activities
i ∈ Cn by solving a mixed integer optimization problem. where the total utility of the schedule is
maximized.

Ω = max
∑

i

ωinUin (7)

The decision variables of the problem are the following:

• ωin: a binary variable equal to 1 if activity i is scheduled and 0 otherwise,
• zi jn: a binary variable equal to 1 if activity i follows activity j in the schedule and 0

otherwise,
• xin , τin: positive continuous variables representing respectively the start time and the

duration of activity i.
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The problem is subject to a set of constraints:∑
i

∑
j

(
τin + zi jnti jmn

)
= T (8)

ωdawnn = ωduskn = 1 (9)

ωin ≤ τin ∀i ∈ Cn (10)

τin ≤ ωinT ∀i ∈ Cn (11)

zi jn + z jin ≤ 1 ∀i, j ∈ Cn, j , i (12)

ziin = 0 ∀i ∈ Cn (13)

zi,dawnn = zdusk, jn = 0 ∀i, j ∈ Cn (14)∑
i,i, j

zi jn = ω jn ∀ j ∈ Cn, j , dawn (15)∑
j, j,i

zi jn = ωin ∀i ∈ Cn, i , dusk (16)(
zi jn − 1

)
T ≤ xin + τin + zi jnti jmn − x jn ≤

(
1 − zi jn

)
T ∀i, j ∈ Cn (17)∑

i

ωi ≤ 1 ∀i ∈ G (18)

xin ≥ γ
−
i ∀i ∈ Cn (19)

xin + τin ≤ γ
+
i ∀i ∈ Cn (20)

Equation(8) constrains the total time assigned to the activities in the schedule (duration and
travel time to successive activity with mode m) to be equal to the time budget. Equation (9)
ensures that each schedule begins and end at home (dawn and dusk are respectively the first
and last in-home activity of the day). Equations (10) and (11) enforce consistency with the
activity durations, by requiring the activity to have a duration of at least one unit if it takes place
(10), and for the activity to have zero duration if it does not take place. Equations (12)-(17)
constrain the sequence of the activities: (12) ensures that two activities i and j can only follow
each other once (thus can only be scheduled once) and (13) ensures that an activity cannot
follow itself. (14), (15), (16) state that each activity but the first has only one predecessor, and
each but the last only one successor. (17) enforces time consistency between two consecutive
activities (with ti jmn the travel time between them using mode m). (18) ensures that only one
activity within a group of duplicates G (as defined in section 3.1) is selected. Finally, (19) and
(20) are time windows constraints. The outcome of the model is a feasible schedule S which
includes activities from considered set Cn, and which complies with the constraints. As the
utility functions of all activities depend on the error term, we expect different draws of εin to
generate different solutions (see Section 3.5).
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3.5 Simulation

The outputs of the model are defined conditionally on the distributions of the error terms εin and
the parameters θn (which in this case are the penalty values). A simulation is thus performed in
order to draw solutions (i.e. deterministic schedules) from the choice model. While traditional
methods such as Metropolis-Hastings are appropriate to deal with combinatorial problems of
this nature, we opt for a simpler approach: we draw first from the distribution of the error terms
and the parameters, then solve the optimization problem for this instance. The resulting schedule
is a single draw from the choice model.

4 Empirical investigation

4.1 Case study 1: Authors’ dataset

The first case-study uses data collected from a survey on habitual daily activities and scheduling
preferences for a sample of 10 individuals over the course of a 7-day week. On each day
during the week, the respondents filled in their intended schedule for the following day (start
time and duration for each activity), as well as all considered locations for each activity. In
addition, they were asked to specify their scheduling flexibility for each activity, by giving
a score S = {−1, 0, 1}, 1 indicating low flexibility, moderate flexibility, and high flexibility
respectively. On the first day of the survey, the respondents were asked to fill the activities they
intended to perform during the week, regardless of the day.

The activities were sorted in 11 categories (home, work1, education2, shopping3, errands and
services4, escort, fitness, leisure, other). A travel time matrix was created for each respondent
based on the locations they indicated having considered for the day. In the absence of information
on mode choice (the respondents having only indicated which modes they had access to) the
matrix was computed using the Google Directions API for all available modes (car, public
transportation, bicycle and walking).

1This activity is only available to respondents who are regularly employed and have a usual workplace they have
to travel to. It is worth noting that some of the respondents had a possibility to work from home. In this case,
we categorized this as a work activity taking place at the location of the home, rather than including it in the
home category. Nevertheless, we assume that working from home and working at the regular workplace do not
necessarily share the same characteristics (e.g. flexibility, duration).

2Only available to respondents who are students
3Shopping for non-essential items.
4Shopping for essential items, e.g. food, and use of services e.g. medical appointments.
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4.1.1 Results

Figure 2 illustrates the results obtained for one individual, and different draws of the error term
εin. The chosen penalty values are summarized in Table 15, and the error term random variables
for start time and duration were discretized as follows:

• Start time: 4 iid random variables εx
k ∼ N(0, 1), for every 6h time block.

• Duration: 6 iid random variables ετk ∼ N(0, 1), with the following intervals: τin ∈

{[0, 1h], ]1h, 3h], ]3h, 8h], ]8h, 12h], ]12h, 16h], ]16h, 24h[}

The individual of interest has the following considered set:

1. Working in the morning and the afternoon, either at their usual workplace or at home,
2. Having a lunch break, either to eat at a restaurant near their workplace, or to run errands.
3. A fitness session, preferably after work.
4. A leisure outing in the evening.

Table 1: Penalty values by flexibility, in units of utility

Deviation Flexibility Penalty θ

Early start

Flexible (F) 0

Moderately flexible (MF) -0.61

Not flexible (NF) -2.4

Late start

F 0

MF -2.4

NF -9.6

Short duration

F -0.61

MF -2.4

NF -9.6

Long duration

F -0.61

MF -2.4

NF -9.6

The first example (Fig. 2(a) ) shows a schedule for a working day where both the morning
and afternoon work blocks are scheduled at home, with a lunch break at a restaurant near the
workplace, and a fitness session after work. In the example in Fig. 2(b) there is no fitness
nor eating out planned, but the person is scheduled to run errands during lunchtime.The work

5The penalty values were arbitrarily assigned, using results from (Small, 1982)
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duration is 1h longer than the previous solution. While both schedules are different, they are
both feasible in the sense that the mandatory activities (work) are scheduled and are relatively
close to the stated timing preferences, while lower priority activities (lunch, errands, fitness), are
only scheduled if possible and if they provide a substantial gain in utility. Given that the leisure
outing is not scheduled in any of the 4 presented schedules, we can infer that neither condition
was met. On the other hand Fig. 2(c) and 2(d) show examples that are sound in the context of
the model, but unlikely in terms of behavior: 2(c) represents a day with no activity scheduled,
and in 2(d), only half of the work time scheduled. Both these instances highlight the importance
of choosing the right combination of error terms to obtain schedules that are not only feasible,
but also realistic given context-specific conditions.

(a) Solution 1

(b) Solution 2

(c) Solution 3

(d) Solution 4

Figure 2: Example of results from the authors’ dataset
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4.2 Case study 2: Swiss Mobility and Transport microcensus

The second case study uses data from the Swiss Mobility and Transport microcensus (MTMC),
a Swiss nationwide survey gathering insights on the mobility behaviours of local residents (OFS,

2015). Respondents provide their socio-economic characteristics (e.g. age, gender, income) and
those of the other members of their household, and information on their daily mobility habits,
and detailed records of their trips during a reference period (1 day). The 2015 edition of the
MTMC contains 57’090 individuals, and 43’630 trip diaries. We test the model on Lausanne
residents only, reducing the number of daily trip diaries to 2’227.

From the 13 trip purposes (and an additional 18 leisure subcategories) available in the travel
diaries, we keep only 9: home, work, education, shopping, errands and use of services, business
trips, leisure and escort. The start, end and durations of each activity are derived from the timings
of the recorded trips. The latitude and longitude values are provided for each visited locations,
and these measures are used to produce a travel time matrix using the Google Directions API.
For the sake of simplicity, we ignore mode choice, and consider only the car mode.

A major limitation of this revealed preference dataset is the lack of subjective and qualitative
information, such as the preferences of the individual in terms of start times and durations, their
flexibility or simply whether the activities they have recorded for the day were freely chosen or
constrained in any way. To estimate the model, we make the following simplifications:

• The desired start times and durations are assumed equal to timings recorded by the
individual.

• The feasible time windows are obtained using the average values for start and end times
for each activity in an out-of-sample distribution, obtained using 30% of the observations
in the Lausanne sample.

• We assume that the individuals visits all locations of their considered set. This implies
that there can be no duplicates of activities and therefore constraint (18) does not apply.

• Activities are classified in 3 categories (mandatory, maintenance and discretionary, to
which a flexibility profile is assigned, uniformly across all population (Table 2). Deviation
penalties are defined based on this classification (Table 1).

6Not including mandatory home stays dawn and dusk
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Table 2: Categories and flexibility profiles for activities in the MTMC
The following acronyms are used: F=flexible, MF=moderately flexible, NF=not flexible

Activity Category Flexibility profile

Work

Mandatory

Start Duration

Education Early: NF Short: NF

Business trip Late: MF Long: NF

Errands, use of services
Maintenance

Early: MF Short: MF

Escort Late: MF Long: F

Home6

DiscretionaryShopping Early: F Late: MF

Leisure Short: F Long: F

4.2.1 Results

We present one example from an individual in the MTMC. The set of considered activities
contains two education activities (preferred in the morning, and in the afternoon), with a return
at home during lunchtime. A leisure activity is also considered, to start at the end of the last
education period, followed by a return home.

Figure 3 shows three unique outputs produced by the model, for different draws of εin (keeping
the same discretization as in section 4.1 ). The first option (Fig. 3(a)) shows a sequence in which
both education instances are scheduled, including the return home at noon. In the second option
(Fig. 3(b)), the leisure activity is scheduled, relatively closely to the individual’s preferences.
The third solution (Fig. 3(c)) also includes the leisure activity, however the proposed timing has
deviated substantially from the assumed preferences. Unsurprisingly, the changes in solution
affect mainly the discretionary activity, for which deviations are far less penalized than its
mandatory counterparts.
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(a) Solution 1

(b) Solution 2

(c) Solution 3

Figure 3: Example of results from the MTMC
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5 Conclusion and future work

This paper presents an integrated framework to solve the activity-based problem by using an
optimization approach. The advantage of the proposed methodology is two-fold:

1. all choices pertaining to daily mobility (activity scheduling, mode choice, destination) can
be considered simultaneously,

2. the probabilistic nature of the model brings more flexibility and realism to the results.

In its current stage, the model relies on a number of assumptions to produce results, as the
required insights are not always available in traditional data sources such as travel diaries. One
remaining challenge is thus to provide heuristics to obtain estimators for the missing attributes.
Specifically, information such as the activities considered by the individual (as opposed to those
they record in the travel diary), their preferences in terms of start time, duration or frequency of
the activity, or their flexibility are difficult to derive from straightforward, factual surveys.

Table 3 summarizes data requirements and two possible solutions to overcome the lack of
information. The heuristic column describes straightforward implementations, which can be
used to obtain initial results in the absence of exhaustive data.

A crucial improvement for future iterations of the model is the enhancement of the utility
functions, notably by integrating socio-economic attributes. A significant challenge will be to
estimate the values of the parameters from the observations, which can be approached with
Bayesian estimation methods.
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Table 3: Data requirements for operational model

Requirements Rigorous solution Heuristic

Desired start times and dura-

tions

Habit analysis and identification of

typical timings in multidays diaries

Out-of-sample distributions, with

geographical sampling

Flexibility Habit analysis in multidays diaires:

flexibility would be the timing vari-

ability

Assign a flexibility profile to each

activity based on literature classifi-

cation

Penalty values Calibrated on data; n-dependent From literature, homogeneous

across all population

Constant utility of activities Calibrated on data Captured by error term

Feasible time windows Data collection Minima and maxima values in out-

of-sample distributions of start and

end times for each activity, across

the population

Travel time matrix Build a set of considered locations

within defined radius of home and

work location (e.g. using geograph-

ical sampling), then use Google

Maps distance matrix API

Use Google API between locations

recorded by individual n in diary

Variance of error term Calibrate from data Trial and error, minimization of dis-

tance with optimal schedule
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