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Abstract

Most real-world problems deal with decision-making at the individual level. Individual choices
are typically represented through disaggregate demand models, which provide a realistic inter-
pretation of human behavior by explicitly accounting for population heterogeneity. Disaggregate
demand models have a substantial appeal for planning and design problems. However, due to
their non-linear and non-convex nature, they require expensive estimation procedures based on
simulation. Their disadvantage is therefore computational burden, which currently prohibits
their use for realistically-sized decision-making problems.
Pacheco et al. (2021) proposed a simulation framework at the intersection of discrete choice and
mathematical optimization, which allows to linearize disaggregate demand models and explicitly
account for individual choices in mixed integer linear programs. The flexibility of this new
framework comes at the price of computational complexity. Therefore, in order to speed-up the
solution process, it is necessary to deploy mathematical decomposition algorithms that exploit
the problems structure.
In this survey, we review choice-based optimization and mathematical decomposition, with the
intention of combining the two in future research directions. Although the work is still at a
conceptual stage, it is anticipated that this research direction will further demonstrate the power
of combining techniques from the currently disconnected fields of optimization, discrete choice
and simulation in solving crucial choice-based optimization problems.
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1 Introduction

Most real-world problems in transportation and logistics are discrete decision-making problems
that involve the choice of individuals, with different socio-economic characteristics and tastes,
among a discrete and finite set of alternatives, that may need to be optimized. Such choice pro-
cess is governed by complex random utility models, in which the probability that an individual
picks a given alternative is in general a non-linear and non-convex function and has no closed
analytical form (Manski (1977)). As a consequence of this complexity, random utility models
have been typically: (i) estimated through extensive simulations on small-scale instances, and
(ii) only explicitly considered for alternative optimization by relying on restrictive assumptions
upon individual behavior.
Since the popularization of the logit model (McFadden (1974)), and thanks to the increased avail-
ability of customer-specific datasets, discrete choice models (DCM) based on the random utility
principle have confirmed their power in predicting individual behavior. The main advantage of
the logit model relies on its convex and closed-form probabilistic expression, which facilitates
its direct embedding in choice-based optimization problems. However, the logit model is char-
acterized by several assumptions that give rise to unrealistic estimates of individual behavior
when alternatives are added to or deleted from the choice set, i.e. substitution patterns (Bierlaire
(1998)). To relax such assumptions, more complex non-convex DCMs have been proposed in
the literature, such as cross-nested logit models (e.g. Fosgerau et al. (2013)) and mixed logit
models (e.g. McFadden and Train (2000)), to name a few. While advanced DCMs are better
suited to predicting individual behavior in real-world settings, the complexity resulting from
their non-convex mathematical form makes them unsuitable for large-scale decision-making
problems.
In the literature, discrete decision-making problems involving discrete choice models, here-
after called "choice-based optimization" problems, have been tackled through optimization
approaches that differ in their ability to produce high-quality solutions and to solve problems at
scale. On the one hand, it is possible to assume simplistic discrete choice models (e.g. the logit)
and optimize a unified choice-based assignment problem. This exact optimization approach can
be applied to problems at scale but yields to approximated results as it relies on specific assump-
tions upon individual behavior (e.g. Alfandari et al. (2021), Akçakuş and Mišić (2021)). On the
other hand, it is possible to rely on extensive simulations to linearize any non-convex advanced
discrete choice model to optimize a unified choice-based assignment problem (Train (2009)).
This other exact simulation-based optimization approach yields to optimal results but can only
be applied to small-scale problem instances, as the optimization problem exponentially scales
with the number of individuals, alternatives, as well as simulation replications (e.g. Pacheco
(2020), Pacheco et al. (2021)). As such, new research directions are focusing on the design
of appropriate mathematical decomposition frameworks to solve choice-based optimization





       

problems under no specific assumptions upon individual behavior and at scale (e.g. Pacheco
et al. (2018), Bortolomiol et al. (2021)).
Matematical decomposition is an optimization field that aims at exploiting specific structural
properties of decision-making problems to speed-up the solution process by parallelization
(Conejo et al. (2006)). Discrete decision-making problems can be characterized by one or more
of the following structural properties: (i) a set of complicating decision variables, and (ii) a set
of complicating constraints (iii) an exponential number of decision variables. Each of these
properties can be addressed through specific mathematical decomposition techniques. Namely,
(i) Benders’ decomposition (Benders (1962)), (ii) Lagrangian relaxation (Fisher (1981)), and
(iii) column generation (Desaulniers et al. (2006)).
In this survey, we review choice-based optimization problems and mathematical decomposition
techniques. In Section 2, we formally introduce the mathematical background for choice-based
optimization, based on Pacheco et al. (2021), and provide some examples of transportation
problems which are choice-based. In Section 3, we briefly review Benders’ decomposition,
Lagrangian relaxation, and column generation for a generic mathematical program which ex-
hibits a structure that is common to multiple problems in transportation. Finally, Section 4
concludes this paper by examining choice-based problems that could benefit from mathematical
decomposition and state possible challenges in future research.

2 Choice-based optimization

This Section formally introduces choice-based optimization in a simulation context, based on
the work of Pacheco et al. (2021). For a comprehensive review on choice-based optimization for
revenue management applications, the reader is referred to Strauss et al. (2018).
Consider a discrete and finite set of alternatives i ∈ I which are offered to individuals n ∈ N.
Note that set of available alternatives I also include the opt-out option. Each individual n is
a choice maker whose goal is to maximize an utility function Uin, ∀i ∈ I. The explanatory
variables of Uin include socio-economic characteristics and tastes of the individuals, as well
as the attributes of the alternatives. The utility function Uin is of probabilistic nature and is
decomposed into a systematic component Vin, which contains all of the observed variables, and
a non-systematic component εin, which captures the randomness caused by unobserved variables
and taste variations over time (Manski (1977)), as follows:

Uin = Pin = Pr[Vin + εin = max j∈IVin + εin]

As shown in Pacheco et al. (2021), the utility function Uin can be linearized via simulation.
Specifically, we approximate the non-systematic part of Uin through r = {1, . . . ,R} independent





       

draws (or scenarios), for each alternative i and individual n. As such, the scenario-specific utility
function can be re-written as:

Uinr = Vin + ζinr

Where, ζinr is the drawn error term parameter for scenario r. Assuming individuals are utility
maximizers, then the utility of the chosen alternative in scenario r is:

Umax
nr = max

j∈I
U jnr

and the chosen alternative xinr = 1 ⇐⇒ Uinr = Umax
nr , for each individual n and scenario r.

As such, assuming Uinr is given ∀i ∈ I, ∀n ∈ N , and ∀r ∈ R, any choice-based optimization
problem can be seen an optimization problem containing the following knapsack problem:

max
xinr

∑
i∈I

Uinr xinr

s.t.∑
i∈I

xinr = 1 ∀n ∈ N ,∀r ∈ R (1)

xinr ≥ 0 ∀i ∈ I, n ∈ N ,∀r ∈ R

Note that if all Uinr are different across i, then the optimal solution to (1) is binary.
Finally, there exists multiple transportation problems that are choice-based. Other than natural
applications in revenue management (Strauss et al. (2018)), other relevant applications include:
(i) network design (e.g. Farahani et al. (2013)), (ii) network pricing (e.g. Gilbert et al. (2014)),
(iii) facility location (e.g. Haase and Müller (2014)), (iv) assortment optimization (Alfandari
et al. (2021), Akçakuş and Mišić (2021)), (v) inventory control (e.g. Atzeni et al. (2012)), and
(vi) train timetable design (Robenek et al. (2018)).

3 Mathematical decomposition

This Section introduces mathematical decomposition techniques that can be employed for
choice-based combinatorial optimization problems characterized by the following structural
properties: (i) a set of complicating decision variables, (ii) a set of complicating constraints, and
(iii) an exponential number of decision variables. For each problem structure, we provide a brief
overview on the specific mathematical decomposition technique for a general mathematical





       

(a) Decomposition: complicating variables (b) Decomposition: complicating constraints

program, based on the material in Gendron (2016). The reader is referred to Conejo et al. (2006)
for a comprehensive review on mathematical decomposition.

3.1 A general mathematical program

Consider a general mathematical program with a linear objective function and linear constraints,
in which part of the decision variables y are integer while others x are continuous, as follows:

Z(M) = min f T y + cT x

s.t.

Ax = b

Bx + Dy ≥ e (2)

Gy ≥ h

x, y ≥ 0

y ∈ Z+

Such mathematical program can be characterized by block-diagonal constraints linking the
integer decision variables y and the continuous decision variables x. Depending on the specific
structure of such constraints, the mathematical program is either characterized by complicating
variables (as depicted in Figure 1(a)) or complicating constraints (as depicted in Figure 1(b)).
Examples of problems exhibiting the mathematical structure of (2) include network design
(Farahani et al. (2013)), facility location (e.g. Haase and Müller (2014)), and assortment





       

optimization (Alfandari et al. (2021), Akçakuş and Mišić (2021)).

3.2 Complicating variables: A review on Benders’ decomposition

Combinatorial optimization problems that are characterized by complicating integer decision
variables are typically tackled by a Benders’ decomposition approach (Benders (1962)). The
logic of this approach lies in the determination of the complicating integer variables of the
mathematical problem, which can be temporarily fixed to give rise to much simpler linear
subproblems to be solved. With this premise, a mathematical program is therefore split into two
problems: (i) a problem containing all integer decision variables and constraints (i.e. the master
problem), and (ii) a problem containing all continuous decision variables and constraints (i.e.
the sub-problem). The master problem is solved, and an integer-feasible solution is found. This
integer solution is successively used to solve the linear subproblem and produce: (i) feasibility
cuts, if the subproblem is infeasible with the integer solution from the master problem; or (ii) op-
timality cuts, if the subproblem provides an optimal solution given the fixed integer solution
from the master problem.. Note that if the master problem is found to be infeasible at any point,
the overall problem is infeasible. Similarly, if the master problem is found to be unbounded
at any point, the overall problem is unbounded. Examples of problems in transportation that
are typically solved by Benders’ decomposition include network design problems (e.g. Costa
(2005)), facility location problems (e.g. Fischetti et al. (2017)), and resource management (Cai
et al. (2001)), to name a few. For a review on Benders’ decomposition, the reader is referred to
Rahmaniani et al. (2017).
Let us consider the mathematical program (2), introduced in Section 3.1, featuring the compli-
cating linking constraints as shown in Figure 1(a). The rationale of Benders’ decomposition is
based on the recognition of the complicating variables y, which can be fixed to feasible values
ȳ = {y ∈ Z+ | Gy ≥ h}, to successively solve the following simple linear program, called the
Benders’ subproblem:

Zx(ȳ) = min cT x

s.t.

Ax = b (3)

Bx ≥ e − Dȳ

x ≥ 0





       

Note that the Benders’ subproblem (3) can be re-written in its dual form as:

Zx(ȳ) = max πb + α(e − Dȳ)

s.t.

πAx + αB ≤ c (4)

α ≥ 0

On the one hand, if the Benders’ subproblem (3) is infeasible then its dual (4) is unbounded and
there exists and extreme ray (π j, α j) of the dual polyhedron D = {(π, α) | πA + αB ≤ c, α ≥ 0}
such that π jb + α j(e − Dȳ) > 0. On the other hand, if the Benders’ subproblem (3) is feasible
then its dual (4) is also feasible and there exists an extreme point of the dual polyhedron D,
(πk, αk) such that πkb + αk(e − Dȳ) = Zx(ȳ). With such premises, the original problem (2) can be
re-written as follows:

Z(M) = min
y

f T y + Zx(y)

Zx(y) = {max
k

(πkb + αk(e − Dy)) | π jb + α j(e − Dy) ≤ 0, j ∈ J}

and by replacing Zx(y) by a variable z, we obtain:

Z(M) = min
y,z

f T y + z

s.t.

πkb + αk(e − Dy) ≤ z ∀k ∈ K (5)

π jb + α j(e − Dy) ≤ 0 ∀ j ∈ J

Finally, we can solve the master problem (5) through the following cutting-plane procedure:





       

1. Start by solving a relaxed master problem with no constraints associated with K and J

2. At every iteration, solve the Benders’ subproblem to derive:

• an extreme point (πk, αk), or

• an extreme ray (π j, α j)

3. If you find an extreme point (πk, αk), add the optimality cut: πkb + αk(e − Dy) ≤ z

4. If you find an extreme ray (π j, α j), add the feasibility cut: π jb + α j(e − Dy) ≤ 0

5. At every iteration, let (ȳ, z̄) be the optimal solution to the relaxed master problem, and x̄

be the optimal solution to the Benders’ subproblem (if feasible), then: f ȳ + z̄ ≤ Z(M) ≤
f ȳ + cx̄

6. The algorithm stops when z̄ = cx̄

3.3 Complicating constraints: A review on Lagrangian relaxation

Combinatorial optimization problems featuring complicating constraints can be addressed by a
Lagrangian relaxation approach (Fisher (2004)). The logic of this approach lies in the determina-
tion of the complicating constraints of the mathematical problem, which can be multiplied with
Lagrangian dual variables and transferred into the objective function. This process produces a
relaxed problem which is easier to solve and which provides optimistic bounds to the optimal
objective value to the original problem. Examples of problems in transportation that are solved
by Lagrangian relaxation include generalized assignment problems (e.g. Jörnsten and Näsberg
(1986)), fleet sizing for network flow problems (e.g. Desrosiers et al. (1988)), location-routing
(e.g.Shan et al. (2020)), and inventory routing (Chow and Nurumbetova (2015)). For a review
on Lagrangian relaxation, the reader is referred to Fisher (2004).
Let us consider the mathematical program (2), introduced in Section 3.1, featuring the complicat-
ing linking constraints as shown in Figure 1(b). If we relax the complicating linking constraints
Bx + Dy ≥ e using lagrangian multipliers α, we result in the following Lagrangian sub-problem:

Z(L(α)) = min
x,y

(c − αB)x + ( f − αD)y + αe

s.t.

Ax = b

Gy ≥ h





       

x, y ≥ 0

y ∈ Z+

Note that, since L(α) is obtained by relaxing the complicating linking constraints between x and
y, Z(L(α)) is a lower bound on Z(M)∗ (i.e. Z(L(α)) ≤ Z(M)∗). Even if Z(L(α)) is only a lower
bound on the original problem, it allows us to define optimality gaps (i.e. to depict how far a
given solution is from optimality). This is a very useful information in practice, as it allows
us to assess the degree of sub-obtimality of a given solution and terminate our search early. In
order to obtain the best bound on Z(M)∗ using Z(L(α)), we solve the following Lagrangian dual
problem:

Z(LD(M)) = max
α≥0

Z(L(α))

The most popular, since very easy to implement, choice to obtain optimal or near-optimal multi-
pliers are subgradient algorithms (Boyd et al. (2003)). However, note that another compuation
method based on the replacement of Y by conv(Y) also exists (see Wolsey and Nemhauser
(1999)). Note that Z(L(α)) is continuous and concave but non-differentiable in α. A subgradient
of Z(L(α)) at ᾱ is given by (e − Bx̄ − Dȳ), where (x̄, ȳ) solves the Lagrangian subproblem for
α = ᾱ. For a review on the subgradient method for lagrangian relaxation, the reader is referred
to Section 3.5.3 in Pacheco (2020).

3.4 Exponential number of decision variables: A review on column

generation

Combinatorial optimization problems featuring an exponential number of decision variables
can be addressed through a column generation approach (Lübbecke (2010)). Such approach
iteratively adds the decision variables from the mathematical model and employs duality theory
to determine whether there are no more decision variables that can be added which would result
in an improved solution (i.e. they have no negative reduced cost). In this case, an optimal
solution has been found with only a subset of the decision variables and the algorithm can
be terminated at an early stage (Lübbecke (2010)). This process is referred to as the pricing
sub-problem and as such branch-and-bound algorithms that are enhanced by column generation
are referred to as branch-and-price algorithms (Vanderbeck (2000)). Examples of problems in
transportation that are typically solved by column generation include vehicle routing problems
(e.g. Ceselli et al. (2009), Feillet (2010)), crew scheduling problems (e.g. Desaulniers et al.

(2002)), and activity-based scheduling (Boyer et al. (2014)). For a review on column generation,





       

the reader is referred to Desaulniers et al. (2006).
Let us consider the mathematical program (2), introduced in Section 3.1, featuring an exponential
number of decision variables. If we ignore the continuous decision variables x and complicating
constraints Bx + Dy ≥ e, the remaining problem may correspond to a routing sub-problem, as
for example a multi-commodity network flow problem (MCNFP) (e.g. Trivella et al. (2021)). In
the MCNFP, a set of commodities k ∈ K are to be routed through a directed network G = (N, A),
with node set N and arc set A, with arc capacities ui j and commodity-specific costs ck

i j. The goal
of the problem is to satisfy the commodity demand dk between origins O(k) and destinations D(k)
by using only one path per commodity at minimum cost, while respecting capacity constraints.
As such, the MCNFP can be formulated as follows:

Z = min
∑

(i, j)∈A

∑
k∈K

ck
i jy

k
i j

s.t.

∑
j∈N+

i

yk
ji −

∑
j∈N−i

yk
i j =


1 if i = O(k),

−1 if i = D(k),

0 otherwise.

∀i ∈ N ,∀k ∈ K

∑
k∈K

yk
i j ≤ ui j ∀(i, j) ∈ A

yk
i j ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K

It is a well-known result in network flow theory that an extreme point xp = (xpi j) of the polytope
defined by the convex hull of Y corresponds to a circuit-free path p ∈ Pk between O(k) and
D(k) for each k (Desaulniers et al. (2006)). This enables us to express the MCNFP as a convex
combination of path flows and derive the following master problem:

Z = min
∑
k∈K

∑
p∈Pk

( ∑
(i, j)∈A

ck
i jδ

kp
i j

)
λkp

∑
p∈Pk

λkp = 1 ∀k ∈ K → (θk) (6)

∑
k∈K

∑
p∈Pk

dkδ
kp
i j λ

kp ≤ ui j ∀(i, j) ∈ A → (αi j)

λkp ≥ 0 ∀k ∈ K ,∀p ∈ Pk

δ
kp
i j ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K ,∀p ∈ Pk





       

where δkp
i j = 1 ⇐⇒ (i, j) ∈ Pk, and 0 otherwise.

One starts with solving the linear programming (LP) relaxation of the path-based MCNFP.
However, note that Pk generally has a high cardinality and ,consequently, the LP relaxation
of the path-based model has an exponential number of decision variables. Column generation
proposes a solution to this problem by generating a subset of sufficiently meaningful variables,
forming the so-called restricted master problem (RMP) (Desaulniers et al. (2006)). More
variables are added iteratively if needed. As in the simplex algorithm (Dantzig and Thapa
(2006)), we need to identify promising variables to enter the basis. The identification is done
by solving a pricing sub-problem through the following procedure: (i) optimize the RMP to
determine the current optimal objective function value z̄ and dual multipliers θk and αi j, and
(ii) find the variable λkp with minimum negative reduce cost:

c̄kp =
∑

(i, j)∈A

(ck
i j + αi jdk)δkp

i j − θ
k < 0

If there is no variable with negative reduce cost c̄kp, the column generation method has converged
to the optimal LP relaxation. Finally, there exists multiple branching rules on λkp to efficiently
solve the pricing sub-problem at every node of the branch-and-bound tree, which is at the heart
of any column generation approach (e.g. Barnhart et al. (1994), Barnhart et al. (2000)). New
approaches employing machine learning for branching have also recently emerged (e.g. Lodi
and Zarpellon (2017), Balcan et al. (2018), Morabit et al. (2021)).

4 Conclusion

This survey reviews choice-based optimization and mathematical decomposition for a new
research direction combining the two fields. Mathematical decomposition is an appealing direc-
tion for choice-based optimization, as most of the problems in this field exhibits complicating
decision variables, complicating constraints, and an exponential number of decision variables.
For example, Bortolomiol et al. (2021) is currently tackling an assortment and pricing problem,
in which individual utilities (i.e. lower-level decisions) are explicitly taken into account for the
determination of supplier decisions (i.e. upper-level decisions). This specific choice-based prob-
lem is tackled through a Benders’ decomposition approach as it is characterized by complicating
decision variables, which link lower-level and upper level decisions. As for the work in Pacheco
(2020), the problem exponentially scales with the number of individuals, the number of supply
alternatives, as well as the number of draws used to approximate individual utilities. Assuming
an extension in which lower-level decisions are subject to upper-level capacity constraints, the





       

problem could consider a Lagrangian approach to relax the complicating capacity limits. Other
problems of interest that involve the interplay of choice-based optimization and mathemati-
cal decomposition include activity-based scheduling (e.g. Pougala et al. (2019)), personnel
scheduling/re-scheduling problems, as well as simultaneous routing-scheduling problems (for
example in the context of hyperloop operations). For all of such problems, a column genera-
tion approach has already shown promising results in related problems disregarding individual
choices (e.g. Cordeau et al. (2001), Chow and Nurumbetova (2015), Kamran et al. (2020)).
Finally, although this new research direction is still at a conceptual stage, the main challenge
in our unified approach will lie in the identification of specific problem characteristics arising
from the discrete choice part that we can exploit to enhance the mathematical decomposition
part. Such problem characteristics may be of mathematical nature (e.g. interpretation of duality,
variance reduction) as well as data-driven nature (e.g. socio-economic considerations).
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