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Abstract

In this work, we consider a class of choice-based optimization problems in which the
decision variables of the supplier are discrete. First, we compare this class of problems
with a more general formulation which admits both continuous and discrete variables. A
feasible solution of the problem with both continuous and discrete upper-level variables can
be found by solving a problem with only discrete variables by discretizing all continuous
variables of the original formulation. An appropriate discretization of all continuous
variables can guarantee a good approximation of the solution of the original problem. A
computational analysis shows that the discrete formulation is faster than the continuous-
discrete formulation for complex problems. Then, we show that in the discrete formulation,
in which all utility functions of the customers can be expressed as parameters of the
supplier’s optimization problem, the lower-level optimization problem of the customer is a
continuous knapsack problem. This property is used to derive a Benders decomposition
algorithm for the choice-based optimization problem with discrete variables.

Keywords
discrete choice modeling, choice-based optimization, mixed integer optimization, Benders
decomposition





         

1 Introduction

Discrete choice models constitute a state-of-the-art approach to model demand at a
disaggregate level, since they account for product differentiation and consumer behavioral
heterogeneity. A growing number of works investigate the problem of including discrete
choice models into optimization problems. The most used discrete choice models in the
optimization literature are the multinomial logit and the nested logit. These models
are particularly convenient because they allow to express choice probabilities through a
closed-form expression which can be easily incorporated in a nonlinear optimization model.
On the contrary, other more advanced discrete choice models have more complex forms
which require several simplifying assumptions in order to obtain a tractable formulation.

Discrete choice models can also be integrated into optimization models by means of
simulation of the utility function. This approach is outlined in the recent contribution by
Pacheco et al. (2021), and is applied in a market equilibrium and regulation context by
Bortolomiol et al. (2021b) and Bortolomiol et al. (2021a). A simulation-based approach
has the advantage of accommodating a large variety of advanced choice models available
in the literature. These complex choice models allow for increasingly complex and precise
representations of individual behavior. However, the resulting optimization models suffer
from computational limitations which make large-scale instances intractable.

In this work, we start from the framework proposed by Pacheco et al. (2021) and we examine
some computational aspects of a simple yet general class of choice-based optimization
problems in which all variables on the supply side are discrete. In Section 2 we compare a
model featuring both continuous and discrete variables with one that has only discrete
variables at the supply level. Computational experiments are carried out to evaluate the
trade-offs between the two approaches.

This contribution is structured as follows. Section 2 compares a generic model for
the choice-based optimization problem with a reformulation which requires all decision
variables of the supplier to be discrete and finite. Computational experiments are carried
out to evaluate the trade-offs between the two approaches. Section 3 introduces the
Benders decomposition algorithm and discusses variants, enhancements and applications.
Section 4 discusses how Benders decomposition can be used to solve a particular class of
choice-based optimization problems where all supplier variables are discrete and finite.
Finally, Section 5 summarizes the main findings and presents the future extensions of this
work.





         

2 Choice-based optimization with continuous and
discrete upper-level variables

We consider a market where a discrete and finite set of products are offered to a population.
Let N represent the set of customers (or groups of homogeneous customers with size θn),
who are assumed to be utility maximizers, and let I indicate the set of alternatives available
in the market. Utility functions Uin are defined for each n ∈ N and alternative i ∈ I.
Each utility function takes into account the socioeconomic characteristics and the tastes
of the individual as well as the attributes of the alternative. According to random utility
theory (Manski, 1977), Uin can be decomposed into a systematic component Vin which
includes all that is observed by the analyst and a random term εin which captures the
uncertainties caused by unobserved attributes and unobserved taste variations. Therefore,
the resulting discrete choice models are naturally probabilistic. The probability that
customer n chooses alternative i is defined as

Pin = Pr[Vin + εin = max
j∈I

(Vjn + εjn)]. (1)

Following the approach introduced by Pacheco et al. (2021), we approximate the choice
probabilities using a simulation-based linearization. Specifically, a set R of independent
draws are extracted from the known error term distribution of the discrete choice model
for each n ∈ N and i ∈ I, corresponding to different behavioral scenarios. For each
scenario r ∈ R, the drawn error term parameter ξinr is included in the utility function as
follows:

Uinr = Vin + ξinr, (2)

and consumers deterministically choose the alternative with the highest utility. This
means that the utility of the chosen alternative is equal to

Umax
nr = max

j∈I
Ujnr. (3)

Then, we can express the deterministic choice of consumer n ∈ N in a specific scenario
r ∈ R using the binary variable xinr as follows:

xinr =

1 if Uinr = Umax
nr ,

0 otherwise.
(4)





         

Furthermore, we consider a supplier k that controls a set of alternatives Ik ⊂ I. The
supplier has control over some attributes of these alternatives in order to optimize its
objective function, which in this discussion we assume to be related to profit maximization.
In Section 2.1 we look at a pricing problem, while in Section 2.2 we analyze a combined
assortment and pricing problem.

2.1 Pricing

Initially, we consider the case in which the supplier only controls the prices pi at which its
alternatives i ∈ Ik are offered. For the sake of this discussion, no price differentiation is
applied across customers. In this case, the deterministic part of the utility functions can
be expressed as Uinr = βp,inrpi + q̂inr, where the term q̂inr gathers all the socioeconomic
characteristics and all the attributes of the alternative which are not directly affected by
the decisions of the supplier.

2.1.1 Continuous price variables

Prices are modeled as lower and upper bounded continuous variables. Throughout this
work, we assume that all utilities Uinr are positive for each i ∈ I, n ∈ N and r ∈ R.
This can be obtained with a translation of the utility functions Uinr that is equal across
alternatives for each n ∈ N and r ∈ R. The translation is always possible when all
variables are bounded.

Then, the Continuous Pricing Problem (CPP) of the supplier can be written as follows:

max
p

π =
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|

θnpixinr, (5)

s.t.
∑
i∈I

xinr = 1 ∀n ∈ N,∀r ∈ R, (6)

Uinr = βp,inrpi + qinr + ξinr ∀i ∈ I,∀n ∈ N,∀r ∈ R, (7)∑
j∈I

Ujnrxjnr ≥ Uinr ∀i ∈ I,∀n ∈ N,∀r ∈ R, (8)

0 ≤ pi ≤Mp
i ∀i ∈ I, (9)

xinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N,∀r ∈ R. (10)





         

The objective function (5) maximizes profits. For the sake of simplicity, here we neglect
all fixed and variable costs which the supplier might incur. Constraints (7) defines the
price-dependent utility functions for each alternative, customer and scenario. Constraints
(6) impose that in each scenario every customer chooses one alternative. Notice that
choice is modeled through the binary constraints xinr. Constraints (8) state that the
chosen alternative must be the one maximizing utility.

We can see that the objective function (5) and the set of constraints (8) are non-linear, as
they include a product of a binary and a continuous variable. Let us define the auxiliary
continuous variable winr = pi · xinr, which allows to linearize the product in the following
manner:

0 ≤ winr ≤ pi ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (11)

winr ≤Mp
i xinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (12)

pi − (1− xinr)Mp
i ≤ winr ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (13)

Then, model (5)-(10) can be written as a mixed integer linear optimization model as
follows:

max
p

π =
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|

θnαinr, (14)

s.t.
∑
i∈I

xinr = 1 ∀n ∈ N, ∀r ∈ R, (15)

Uinr = βp,inrpi + qinr + ξinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (16)

Uinr ≤ Unr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (17)

Unr ≤ Uinr +MU
nr(1− xinr) ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (18)

pi − (1− xinr)Mp
i ≤ winr ≤ pi ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (19)

winr ≤Mp
i xinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (20)

pi ≤Mp
i ∀i ∈ I, (21)

pi ≥ 0 ∀i ∈ I, (22)

winr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (23)

xinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (24)

Notice that constraints (17)-(18) are a linear reformulation of the utility maximization
constraints (8). Although not desirable from a computational perspective, the use of
big-M constraints is necessary to linearize the formulation. Model (14-24) can be solved





         

as such, for instance by using a general MILP solver.

2.1.2 Discrete price variables

To circumvent the issue of non-linearity, which requires the use of big-M constraints, we
explore here a different approach to model the interdependence between consumer utilities
and supplier profits. The main additional assumption is that all the decision variables of
the supplier can only take a finite set of values. In the case of continuous variables such as
prices, it is therefore necessary to identify a meaningful discretization, whose consequences
must be evaluated in light of the problem to be solved.

Starting from the non-linear model (5)-(10), for each alternative i ∈ Ik we constrain prices
pi to belong to the set Qi = {p1

i , p
2
i , ..., p

|Q|
i . This can be done by expanding the set of

alternatives I and creating from each original alternative i one alternative for every price
level p ∈ Qi. We define the expanded set of each alternative as Iexpi and the universal
expanded choice set as Iexp = ⋃

i I
exp
i ∪ (I \ Ik). All the utility functions defined for each

customer n ∈ N and alternative i ∈ Iexp are now parameters of the optimization model,
since they can be expressed as

Ûinr = βp,inrp̂i + q̂inr + ξinr ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R.

Therefore, the Discrete Pricing Problem (DPP) of the supplier can be written as follows:

max
y

π =
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|

θnp̂ixinr, (25)

s.t.
∑

j∈Iexp
i

yj = 1 ∀i ∈ I, (26)

∑
i∈Iexp

xinr = 1 ∀n ∈ N,∀r ∈ R, (27)

xinr ≤ yi ∀i ∈ Iexp,∀n ∈ N,∀r ∈ R, (28)∑
j∈Iexp

Ûjnrxjnr ≥ Ûinryi ∀i ∈ Iexp,∀n ∈ N,∀r ∈ R, (29)

xinr ∈ {0, 1} ∀i ∈ Iexp,∀n ∈ N,∀r ∈ R, (30)

yi ∈ {0, 1} ∀i ∈ Iexp. (31)

The objective function (25) maximizes profits. Constraints (26) require the supplier to
choose one price level for each alternative. This is enforced through the set of binary





         

variables yi. Constraints (27)-(28) ensure that in each scenario every customer chooses
one alternative, and the chosen alternative must correspond to a price level chosen by
the supplier. Constraints (29) impose that the chosen alternative must be the available
alternative that maximizes utility.

Furthermore, we can express the lower-level utility maximization problem for a single
customer n and scenario r as follows:

max
x

U =
∑
i∈I

Ûixi, (32)

s.t.
∑
i∈I

xi = 1, (33)

xi ≤ y∗i ∀i ∈ I, (34)

xi ≥ 0 ∀i ∈ I, (35)

where the indexes n and r have been dropped for the sake of simplicity. We notice that the
constraint matrix of problem (32)-(35) is totally unimodular. This convenient property
allows to relax the integrality constraints (30) on the choice variables xinr, which can
simply be replaced by the non-negativity constraints

xinr ≥ 0 ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R. (36)

This means that the customer’s utility maximization problem for each customer n and
scenario r is a continuous knapsack problem where the knapsack’s capacity is equal to 1
and each item (alternative) i has a weight of 1 and a profit of Ûinr. This property will be
exploited in Section 4 when deriving a Benders decomposition scheme for the choice-based
optimization with discrete variables.

2.2 Assortment and pricing

Another aspect worth evaluating when discussing the differences between choice-based
optimization models with continuous and discrete price variables is the possibility to
incorporate other decision variables in the formulation, and the impact that these decisions
have from a computational perspective. Here, we consider the case of assortment, that
is, the decision about whether or not to offer any given product to the customers. In
many optimization problems, this is a strategic decision which is made before the pricing
stage, in a sequential manner. However, in other application it can be convenient to treat
assortment (or, equivalently, in Section 2.3.2, facility location) and pricing as simultaneous





         

decisions.

2.2.1 Assortment and continuous price variables

To also consider assortment decisions, model (14)-(24) must be modified to include a new
set of auxiliary variables Ua

inr = Uinr · yi, which are needed to model the fact that the
customer must choose the alternative with the highest utility among those that are made
available by the supplier. This yields the following formulation for the Assortment and
Continuous Pricing Problem (ACPP):

max
p

π =
∑
i∈Ik

∑
n∈N

∑
r∈R

θn
|R|

winr, (37)

s.t.
∑
i∈I

xinr = 1 ∀n ∈ N, ∀r ∈ R, (38)

Uinr = βp,inrpi + qinr + ξinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (39)

Ua
inr ≤ Uinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (40)

Uinr ≤ Ua
inr +MUinr

(1− yi) ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (41)

Ua
inr ≤MU

inryi ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (42)

Ua
inr ≤ Unr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (43)

Unr ≤ Ua
inr +MUnr(1− xinr) ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (44)

pi ≤Mp
i ∀i ∈ I, (45)

pi − (1− xinr)Mp
i ≤ winr ≤ pi ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (46)

winr ≤Mp
i xinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (47)

pi ≥ 0 ∀i ∈ I, (48)

xinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (49)

winr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (50)

2.2.2 Assortment and discretized price variables

To include assortment decisions in model (25)-(31), it is sufficient to remove the set of
constraints (26). Indeed, for an alternative i ∈ I, not choosing any of the price levels that
define the expanded set Iexpi is equivalent to not including alternative i in the assortment.
Therefore, the Assortment and Discrete Pricing Problem (ADPP) has (25) as objective
function and (27)-(31) as constraints.





         

Alternative 0 1 2 3 4 5 6 7

Mode Car IC Air Air HSR HSR HSR HSR
Endogenous No No No No Yes Yes Yes Yes
Dep time - 2:00 7:10 8:10 5:45 6:45 5:40 6:40
Arr time - 10:00 8:20 9:20 8:45 9:45 9:00 10:00
Travel time (min) 360 480 70 70 180 180 200 200
Waiting time (min) - - 60 60 - - - -
Access time (min) - 0-60 30-60 30-60 0-60 0-60 0-60 0-60
Egress time (min) - 0-30 30-60 30-60 0-30 0-30 0-30 0-30
Price (e) 100 30 60 60 p4 p5 p6 p7

Table 1: Attributes of all scheduled services for the high-speed rail pricing problem
instance.

2.3 Computational analysis

We perform some computational experiments to compare the models detailed in Section 2.1
and Section 2.2. We cover two cases: the first case considers prices to be the only decision
variables on the supply side (CPP and DPP); the second case combines assortment and
pricing (ACPP and ADPP). All MILP models are solved using CPLEX 20.1 with a time
limit of 36 hours.

2.3.1 Pricing

Instance description. As a case study, we consider an intercity transport market in
which various modes are available to travel between two cities in a typical morning
period. In this setting, we take the perspective of a high-speed rail operator wanting
to optimize prices in order to maximize its profits. Departure times and travel times of
all scheduled alternatives are assumed to be exogenously given, together with the prices
of the non-high-speed rail and airline alternatives. Additionally, we include a private
transport option. Table 1 presents the attributes of all alternatives in the choice set.

We consider a synthetic population of 1000 travelers, categorized into 12 groups of
consumers, each having homogeneous socioeconomic characteristics. Homogeneous groups
differ with respect to trip purpose (business or other), income level (high or low) and origin
location (urban or rural) which leads to different access times to terminals. Furthermore,
each individual has a desired arrival time at destination between 9:00 and 11:00 which
follows a non-uniform distribution. The following demand patterns are to be mentioned:
most business travelers desire to arrive at their final destination before 10:00, while
most other travelers are indifferent to arrival time; there is a higher proportion of high





         

β Business travelers Other purpose travelers

µHSR 1.190 1.333
µAir 1.086 1.106
ASCCar 0.000* 0.000*
ASCIC -1.289* -2.138*
ASCAir -2.893* -1.856*
ASCHSR -0.825* -0.572*
Travel time (min) -0.0133 -0.0054
Access/egress time (min) -0.00555 -0.0103
Early schedule delay (min) -0.00188 -0.00677
Late schedule delay (min) -0.0130 -0.00617

Reimbursed High income Low income High income Low income

Cost car (euro) -0.0222* -0.0296* -0.0527 -0.0228* -0.0405
Cost Air (euro) -0.0109 -0.0113* -0.0201 -0.0109* -0.0194
Cost IC (euro) -0.0158 -0.0212* -0.0377 -0.0097* -0.0172
Cost HSR (euro) -0.0120 -0.0160* -0.0284 -0.0144* -0.0256

Table 2: Discrete choice model parameters used in the numerical experiments.

income and business travelers among urban travelers than among rural travelers; a part
of business travelers are reimbursed and are therefore less price sensitive. For the discrete
choice model, we refer to the model estimated by Cascetta and Coppola (2012) from
an intercity travel survey conducted in Italy. Table 2 illustrates the parameters used in
our experiments. Two separate sets of parameters are considered for business trips and
other trip purposes. Additionally, the cost parameters are mode-specific and interact with
income, producing different values of travel time savings. A nested logit model is used
where two nests µHSR and µAir capture the correlation between the scheduled services
of the train operator and of the airline. A more detailed description of the input data
can be found in Bortolomiol et al. (2021b). We remark that the dataset used for the
experiments and the derived results are hypothetical and do not represent real scenarios
that are related to choices made by existing high-speed rail operators.

Numerical results. Here, we are interested in solving the optimization problem of the
high-speed rail operator. The decision variables are the prices p4, p5, p6 and p7 of
the four high-speed rail departures. We execute experiments on models (14)-(24) and
(25)-(31) by varying the following parameters: (i) the number of simulation scenarios
|R| = 20, 50, 100, 200; (ii) the lower bound on the price variables pi ≥ 0 e or pi ≥ 100
e; (iii) for the model with discretized price levels, the size of the set Qi of prices, with
|Qi| = 21, 51, 101, assumed to be equal for each alternatives i ∈ Ik, which cover the feasible
range of the continuous problem by defining evenly spaced values between lower bound
and upper bound (which is set to 200 e for all alternatives and instances).





         

Table 3 shows the results of these numerical tests. As expected, computational times
increase for both the CPP and the DPP when the number of scenarios increases and
decrease when the bounds on the price variables are tighter. The latter observation
highlights the importance of providing tight variables bounds by excluding irrelevant
regions of the search space in order to increase the speed of convergence. The running time
of the DPP increases exponentially with the size of the expanded sets Iexpi . A comparison
between the CPP and the DPP shows that the DPP converges to optimality faster than
the CCP when |R| ≥ 100 and |Iexpi | = 21. It is also important to notice that the CPP
generalizes the DPP for any size of the discretized sets Iexpi , therefore the optimal solution
of the CPP is an upper bound (in a profit maximization context) of the optimal solution of
the DPP. The gap between the two optimal solutions depends on the chosen discretization.
Here, it is never higher than 0.55% when UB − LB = 100 e and |Iexpi | = 101, that is,
when we allow the discretized price variables to take any integer value between 100 e and
200 e.































Instance CPP DPP
Gap

|R| LB UB Time Opt p4 p5 p6 p7 |Iexp
i | Time Opt p4 p5 p6 p7

20 0 200 4.35 71774.95 134.19 100.67 144.95 156.47
21 6.75 70072.00 130.00 100.00 140.00 150.00 2.37%
51 24.07 70885.60 132.00 100.00 144.00 152.00 1.24%
101 61.01 71316.20 134.00 100.00 144.00 154.00 0.64%

20 100 200 0.45 71774.95 134.19 100.67 144.95 156.47
21 1.42 70390.50 130.00 100.00 140.00 155.00 1.93%
51 7.18 71316.20 134.00 100.00 144.00 154.00 0.64%
101 8.89 71379.90 134.00 100.00 144.00 155.00 0.55%

50 0 200 55.01 72423.71 189.67 152.25 110.58 161.24
21 53.62 71720.00 200.00 150.00 110.00 160.00 0.97%
51 246.11 71589.60 200.00 152.00 112.00 160.00 1.15%
101 1262.30 72106.36 200.00 152.00 110.00 160.00 0.44%

50 100 200 10.46 72423.71 189.67 152.25 110.58 161.24
21 14.59 71889.00 200.00 135.00 110.00 160.00 0.74%
51 31.51 72106.36 200.00 152.00 110.00 160.00 0.44%
101 89.91 72185.30 189.00 152.00 110.00 161.00 0.33%

100 0 200 461.74 66724.56 130.09 188.50 139.31 89.88
21 163.57 65874.50 130.00 180.00 160.00 120.00 1.27%
51 1026.32 66098.60 124.00 176.00 148.00 120.00 0.94%
101 5578.19 66255.90 130.00 188.00 148.00 120.00 0.70%

100 100 200 101.64 66452.18 130.09 188.50 139.31 121.38
21 34.48 66118.40 125.00 175.00 155.00 120.00 0.50%
51 161.03 66255.90 130.00 188.00 148.00 120.00 0.30%
101 395.86 66341.32 130.00 188.00 139.00 121.00 0.17%

200 0 200 1824.03 70788.17 135.73 108.29 139.73 108.32
21 717.89 69543.55 140.00 110.00 130.00 120.00 1.76%
51 3746.48 70343.40 136.00 108.00 132.00 108.00 0.63%
101 46337.20 70489.95 126.00 108.00 138.00 108.00 0.42%

200 100 200 288.89 70788.17 135.73 108.29 139.73 108.32
21 139.17 69859.60 125.00 115.00 135.00 110.00 1.31%
51 415.90 70489.95 126.00 108.00 138.00 108.00 0.42%
101 1829.24 70571.67 126.00 107.00 139.00 108.00 0.31%

Table 3: Results for the high-speed rail case study when using the CPP and the DPP to solve the supplier’s pricing problem to optimality.





         

β Value

ASCF SP 0.0
ASCP SP 32.0
ASCP UP 34.0
Fee (e) ∼ N (−32.328, 14.168)
Fee PSP - low income (e) −10.995
Fee PUP - low income (e) −13.729
Travel time to parking (min) ∼ N (−0.788, 1.06)
Travel time to destination (min) −0.612
Age of vehicle (1/0) 4.037
Origin (1/0) −5.762

Table 4: Discrete choice model parameters used in the numerical experiments.

2.3.2 Assortment and pricing

Instance description. For this set of experiments, we look at the combined problem
of selecting a number of sites where to open parking facilities among a set of candidate
locations and determining a price that customers must pay to access open facilities, with
the goal of maximizing the profits of the operator.

We consider a graph representing a stylized city road network, presented in Figure 1. The
supplier considers 8 locations where facilities can be opened, corresponding to the blue
diamond in the graph. The demand is constituted of commuters who want to travel from
the peripheral regions to the city center. In the graph, the origins of the commuters are
represented with red circles, while the center is represented with a yellow star. Commuters
have heterogeneous socioeconomic characteristics, which lead to different preferences. We
use the discrete choice model estimated by Ibeas et al. (2014), who use a mixed logit model
to study car driver’s behavior when choosing among three different parking alternatives
available in a small Spanish town. The explanatory socioeconomic variables include
trip origin, age of the vehicle and income level. Additionally, the following attributes of
the alternatives are considered: type of parking (underground, indicates with U in the
figure, or on-street, indicated with S), travel time from parking to destination, travel
time from origin to parking and parking fee. For the latter two continuous variables,
the corresponding coefficients are normally distributed in the utility function. Table 4
illustrates the parameters of the discrete choice model derived from Ibeas et al. (2014).

Numerical results. The supplier’s decision variables include the binary choice of opening
or not each of the candidate facilities and the prices of the opened facilities. We perform
experiments on models (37)-(50) and (25)+(27)-(31) by varying the number of simulation
scenarios |R| = 10, 20, 50, 100 and the size of the sets Qi of discretized prices.





         

U2

U4

U1
U3

S2

S4

S1 S3

Figure 1: Parking locations used in the case study

Instance ACPP ADPP
Gap

|R| LB UB Time Opt |Iexp
i | Time Opt

10 0.00 3.00 11706 907.8
16 132 864.0 4.82%
31 800 876.0 3.50%

20 0.00 3.00 129600* 877.0*
16 429 842.0 3.99%
31 2778 862.5 1.65%

50 0.00 3.00 129600* 842.8*
16 837 816.4 3.13%
31 12191 830.4 1.47%

100 0.00 3.00 129600* 844.0*
16 3419 828.2 1.87%
31 39425 831.8 1.45%

Table 5: Results for the parking case study when using the ACPP and the ADPP to solve
the supplier’s assortment and pricing problem to optimality.

Table 5 shows the results of these numerical tests. Results marked with an asterisk
indicate that optimality was not proven within the time limit of 36 hours. The major
finding from this set of experiments is that the presence of the binary assortment variables
has a greater impact on the ACPP than on the ADPP. Indeed, even a relatively small
instance with |Ik| = 8, |N | = 8 and |R| = 20 cannot be solved to optimality within 36
hours. By observing the progression of the CPLEX log during the execution, we notice
that for both models good solutions are found early in the algorithm and that most of the
subsequent effort goes into closing the optimality gap.

2.3.3 Discussion

These numerical experiments show the trade-offs to be considered when choosing between
choice-based optimization models that do or do not include continuous variables at the
supply level. In particular, we see that a complex decision space which includes both





         

continuous and discrete variables (price and assortment, in our case) cannot be handled
efficiently by the MILP solver. In this case, a model where all upper-level variables
are discrete provides a valuable alternative for two reasons: (i) the discretization of the
continuous variables can be informed by problem-specific heuristics, and the algorithm can
be designed to control the level of approximation in the discretization; (ii) the resulting
formulation, in which the utility functions of the expanded choice set are parameters, is
such that the lower-level optimization problem of the customer is a continuous knapsack
problem. The latter observation is particularly relevant for the development of a Benders
decomposition algorithm, which is the focus of the following sections.

3 Benders decomposition

3.1 Classical Benders decomposition

While Benders decomposition can also be applied to more generic optimization problems,
here we focus on mixed integer linear programming (MILP) to present the classical
version of the Benders decomposition algorithm (Benders, 1962). Consider the following
optimization problem:

min
y,x

fTy + cTx, (51)

s.t. Ay = b, (52)

By +Dx = d, (53)

x ≥ 0, (54)

y ∈ Z+, (55)

where x ∈ Rn2 , y ∈ Zn1 , A ∈ Rm1×n1 , B ∈ Rm2×n1 , D ∈ Rm2×n2 , b ∈ Rm1 , d ∈ Rm2 .

Model (51)-(55) can be rewritten as follows:

min
ȳ∈Zn1

{
fT ȳ + min

x≥0
{cTx : Dx = d−Bȳ}

}
. (56)

In (56), ȳ is a feasible solution for the complicating integer variables. When we assume
that ȳ is fixed, the inner minimization problem is a continuous problem that can be





         

dualized as follows:

max
α∈Rm2

{
(d−Bȳ)Tα : Dα ≥ c

}
, (57)

where the variables α are associated to the primal constraints Dx = d−Bȳ. From strong
duality, we know that formulation (56) is equivalent to the following formulation:

min
ȳ∈Zn1

{
fT ȳ + max

α
{(d−Bȳ)Tα : Dα ≥ c}

}
. (58)

Notice that in (58) the feasible region F of the inner maximization problem is independent
from ȳ. If the primal problem is feasible, then (57) can be feasible or unbounded. Here,
we restrict our discussion to the former case, in which the solution belongs to the set E of
the extreme points of F . By assuming dual feasibility, we can reformulate (58) using an
artificial continuous variable as follows:

min
y,z

fTy + z, (59)

s.t. Ay = b, (60)

z ≥ (d−Bȳ)Tαe, ∀e ∈ E (61)

y ∈ Z+, (62)

This formulation is commonly referred to as Benders master problem (MP). The set of
constraints (61) are known as Benders optimality cuts and determine a lower bound of
the contribution to the objective function of the original continuous variables x, which
have been projected away. To avoid full enumeration, an iterative approach is proposed
in which the optimality cuts are initially excluded from the model and then progressively
added to the restricted master problem (RMP) using a dynamic cutting-plane generation
technique that consists in solving the RMP to obtain a trial value of the integer variables ȳ
and then solving the worker problem (57) with ȳ to get the dual variables αe and produce
a valid cut to add to the set (61). This approach constitutes the classical implementation
of Benders decomposition.

3.2 Issues and enhancements

Although Benders decomposition is guaranteed to converge to an optimal solution in
a finite number of iterations, the classical implementation is known to be inefficient
for a number of reasons. Here, we outline the most relevant issues and we discuss the
corresponding enhancements that have been proposed in the literature. A more extensive





         

treatment of the algorithmic properties of Benders decomposition and its variations can
be found in the review paper by Rahmaniani et al. (2017).

Master problem In the classical Benders decomposition, a restricted master problem,
whose size increases after each iteration, is solved at each iteration to obtain the optimal
integer variables that is used in the dual subproblem. For this reason, the master problem
usually represents the bottleneck of the algorithm. Some alternative strategies that have
been proposed in the literature to increase computational speed are the following: not
solving the RMP to optimality at each iteration, since in principle a feasible solution is
sufficient to generate Benders cuts at the subproblem level (Geoffrion and Graves, 1974);
using a cut selection strategy that only adds those cuts that improve the best-known
upper bound (Rei et al., 2009); adding cuts as lazy constraints, that is, keeping them
in a pool of constraints which are added only when they are violated by an incumbent
solution. A more modern and advanced approach, which has been shown to consistently
outperform the classical Benders decomposition, avoids solving a new MILP at each
iteration by incorporating the Benders decomposition into a general branch-and-cut
algorithm (Fortz and Poss, 2009, Ljubić et al., 2012, Fischetti et al., 2016). In this way, a
single branch-and-bound enumeration tree is generated for the initial restricted master
problem, and Benders cuts are separated on the fly while processing the nodes of the
tree. This method is typically referred to as branch-and-Benders-cut algorithm. An
advantage of this method is the possibility to integrate Benders cuts and other cutting
planes, by exploiting problem-specific information while processing the branch-and-bound
tree. Furthermore, the branch-and-Benders-cut implementation offers potential speed-up
opportunities in terms of heuristic strategies related to branching rules, node selection
and pruning.

Worker problem The worker problem is a linear problem that can be solved to optimality
using the simplex or other well-known algorithms. Two aspects are worth discussing
here. The first aspect is related to the existence of a block-diagonal structure that allows
decomposing the worker problem into smaller independent subproblems. This possibility
often justifies the use of the Benders decomposition in the first place, and is particularly
relevant for stochastic optimization problems, which will be treated in depth in Section
3.3. In this case, each subproblem r ∈ R will provide a set of dual variables αr that can
be used to generate the following outer linearization approximation to be added to the
restricted master problem:

zr ≥ (dr −Brȳ)Tαre. (63)





         

Notice that the resulting disaggregate cuts can either be added as such or else be fully or
partially aggregated (Birge and Louveaux, 1988). The efficiency of different cut bundling
strategies within a multi-cut scheme is problem-dependent. On the one hand, disaggregate
cuts provide subproblem-specific information that can help cutting the solution space
more efficiently. On the other hand, adding too many cuts, especially if redundant, might
slow down the algorithm. An example of computational analysis for a public transport
network design problem can be found in Mahéo et al. (2019), where intermediate bundling
approaches based on grouping strategies that are informed by problem inputs are found to
outperform both the fully disaggregated approach and the single-cut approach. The second
aspect is related to the selection of the solution of the worker problem from which Benders
cut are generated. This is especially relevant when the worker problem is degenerate and,
therefore, different cuts could be obtained from different optimal solutions. Magnanti and
Wong (1981) introduced the concept of Pareto-optimal cuts to identify those cuts that
are not dominated for any feasible ȳ and showed that such cuts can be derived by solving
an auxiliary problem that uses a core point y0 of the set Y , that is, a point in the relative
interior of the convex hull defined by the feasible points of Y . This approach has been
further investigated by Papadakos (2008) and Sherali and Lunday (2013), among others,
who proposed enhancements to the Magnanti-Wong method.

3.3 Benders decomposition and stochastic optimization

Stochastic optimization methods rely upon a finite set of representative scenarios to
approximate the possible outcomes for the values of the stochastic parameters (Crainic
et al., 2021). In transport optimization problems, uncertainty can exist on parameters such
as expected demand, travel time and travel cost. In this context, solutions are evaluated
under each scenario and weighted according to the probability of occurrence of the scenario,
and their overall quality is then a result of some form of aggregation. The need to generate
large number of scenarios to represent uncertainty produces large-scale models which are
characterized by sets of variables that are duplicated in each independent scenario. These
variables are referred to as second-stage variables, as opposed to scenario-independent
variables which are known as first-stage variables. The results is a block-diagonal structure,
which makes Benders decomposition a promising solution approach when second-stage
variables are linear. Indeed, this technique, also called L-shaped method, has been used
for decades in stochastic programming (see Van Slyke and Wets (1969), Laporte and
Louveaux (1993), Birge and Louveaux (2011)). From a computational perspective, recent
efforts to improve classical Benders decomposition for stochastic optimization focus on
exploiting information from relevant scenarios. This is motivated by the observation that,





         

when all second-stage information is removed, the initial master problem is weak, leading
to computational instability and slow convergence until a sufficient number of cuts is
added. Crainic et al. (2021) introduce partial Benders decomposition, a methodology
that aims at including some information from the scenario subproblems in the master
problem. The authors propose various data-driven scenario retention and scenario creation
strategies which are then tested on a stochastic network design problem. Their results
show that a combination of these techniques allows to find better bounds, reduce the size
of the explored branch-and-bound trees and the number the Benders cuts needed to prove
optimality. Somehow related is the work by Hewitt et al. (2021), who propose to identify
structures in the scenario space by means of clustering methods. More specifically, once
a set R of scenarios is defined, opportunity costs are computed which measure the loss
encountered by taking the decision associated to, say, scenario r1 when scenario r2 actually
occurs. Then, using an opportunity cost distance function, scenarios can be compared
and clustered on a decisional basis in order to derive valid upper and lower bounds from a
reduced number of scenarios and solutions.

3.4 Applications of Benders decomposition

Benders decomposition has proven to be a go-to methodology for several optimization
problems, which can be classified into three main non-mutually exclusive categories: (i)
planning problems where strategic decision variables, e.g. location or routing, are integer
and operational decision variables, e.g. prices or quantities, are continuous; (ii) stochastic
problems which require the evaluation of multiple scenarios which are only connected
at the level of the first-stage variables; (iii) bilevel problems where upper-level variables
capture the decisions of the leader and lower-level variables those of the follower. A
non-exhaustive list of applications of Benders decomposition includes deterministic and
stochastic facility location (Tang et al., 2013, Fischetti et al., 2017, Lin and Tian, 2021,
Parragh et al., 2021), hub location (Contreras et al., 2011), production routing under
uncertainty (Adulyasak et al., 2015), network design problems (Binato et al., 2001, Costa,
2005, Fortz and Poss, 2009, Fontaine and Minner, 2014, 2018, Mahéo et al., 2019, Crainic
et al., 2021), charging station location problem (Arslan and Karaşan, 2016), electric
location-routing problem (Çalık et al., 2021).





         

4 Benders decomposition for the choice-based
optimization problem with discrete variables

In this section, we derive a Benders decomposition scheme for the ADPP introduced in
Section 2.2.2. This derivation can be easily generalized to any choice-based optimization
problem where simulation is used to approximate the choice probabilities of the customers
and where all the decision variables of the supplier are discrete.

Let us start from the MILP model (25)+(27)-(31), which describes the bilevel optimization
problem of the supplier, and the LP model (32)-(35), which describes the lower-level
optimization problem of a single customer. First, we rewrite the latter problem as a
minimization problem by changing the sign of the objective function (32):

min
x

∑
i∈Iexp

−Ûixi. (64)

Dual customer subproblem. Then, the dual of the customer optimization problem is
derived by defining the variable α1, corresponding to constraint (33) of the primal, and
the set of variables α2

i for each i ∈ Iexp, corresponding to the set of constraints (34) of the
primal. The dual problem looks as follows:

max
α1,α2

α1 +
∑
i∈Iexp

y∗i α
2
i , (65)

s.t. α1 + α2
i ≤ −Ûi ∀i ∈ Iexp, (66)

α1 ≤ 0, (67)

α2
i ≤ 0 ∀i ∈ Iexp. (68)

Strong duality conditions state that the primal optimal objective and the dual optimal
objective are equal, that is,

∑
i∈Iexp

−Ûixi = α1 +
∑
i∈Iexp

y∗i α
2
i . (69)

Single-level problem. Thanks to duality, we can then rewrite the utility maximization
conditions (29) and obtain the following formulation which is equivalent to model (25)-
(31):





         

max
y

π =
∑
i∈Iexp

k

∑
n∈N

∑
r∈R

θnp̂ixinr, (70)

s.t.
∑

j∈Iexp
i

yj = 1 ∀i ∈ I, (71)

∑
i∈Iexp

xinr = 1 ∀n ∈ N, ∀r ∈ R, (72)

xinr ≤ yi ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R, (73)∑
i∈Iexp

−Ûinrxinr = α1
nr +

∑
i∈I

yiα
2
inr ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R, (74)

− α1
nr − α2

inr ≤ −Ûinr ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R, (75)

α1
nr ≥ 0 ∀n ∈ N, ∀r ∈ R, (76)

α2
inr ≥ 0 ∀i ∈ Iexp,∀n ∈ N, ∀r ∈ R, (77)

xinr ≥ 0 ∀i ∈ Iexp,∀n ∈ N, (78)

yi ∈ {0, 1} ∀i ∈ Iexpk . (79)

Linearized single-level problem. The product yi · α2
inr in constraints (74) can be lin-

earized as in (11)-(13). We use the auxiliary variables δinr = yi · α2
inr and write the

following set of linear constraints:

δinr ≤ α2
inr ∀i ∈ Iexp, ∀n ∈ N,∀r ∈ R, (80)

δinr ≥ α2
inr −Minr(1− yi) ∀i ∈ Iexp,∀n ∈ N,∀r ∈ R, (81)

δinr ≤Minryi ∀i ∈ Iexp,∀n ∈ N,∀r ∈ R. (82)

And we obtain the following mixed integer linear optimization model:

max π =
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|

θnp̂ixinr, (83)

s.t.
∑

j∈Iexp
i

yj = 1 ∀i ∈ I, (84)

∑
i∈Iexp

xinr = 1 ∀n ∈ N, ∀r ∈ R, (85)

xinr ≤ yi ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (86)∑
i∈Iexp

−Ûinrxinr = α1
nr +

∑
i∈I

δinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (87)

− α1
nr − α2

inr ≤ −Ûinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (88)

δinr ≤ α2
inr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (89)





         

δinr ≥ α2
inr −Minr(1− yi) ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (90)

δinr ≤Minryi ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (91)

α1
nr ≥ 0 ∀n ∈ N, ∀r ∈ R, (92)

α2
inr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (93)

δinr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (94)

xinr ≥ 0 ∀i ∈ I,∀n ∈ N, (95)

yi ∈ {0, 1} ∀i ∈ Ik, (96)

A valid value for the Minr parameters used in constraints (90)-(91) is Ûinr.

Dual of the linearized single-level problem with fixed supply decisions. Let us now
fix the decision variables yi of the supplier, which determine product assortment and
prices, to a value y∗i . We can then derive the worker problem, which is used to find the
optimal choices xinr given y∗i :

min π = −
∑
i∈Ik

∑
n∈N

∑
r∈R

1
|R|

θnp̂ixinr, (97)

s.t.
∑
i∈Iexp

xinr = 1 ∀n ∈ N, ∀r ∈ R, (γ1
nr) (98)

xinr ≤ y∗i ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (γ2
inr) (99)∑

i∈Iexp

−Ûinrxinr − α1
nr −

∑
i∈I

δinr ≤ 0 ∀n ∈ N, ∀r ∈ R, (γ3
nr) (100)

− α1
nr − α2

inr ≤ −Ûinr ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (γ4
inr) (101)

δinr − α2
inr ≤ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (γ5

inr) (102)

α2
inr − δinr ≤M(1− y∗i ) ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (γ6

inr) (103)

δinr ≤My∗i ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (γ7
inr) (104)

α1
nr ≥ 0 ∀n ∈ N, ∀r ∈ R, (105)

α2
inr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (106)

δinr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (107)

xinr ≥ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (108)

From the primal formulation (97)-(108), we can derive the following dual worker problem:

max
∑
n∈N

∑
r∈R

(
γ1
nr +

∑
i∈I

y∗i γ
2
inr +

∑
i∈I
−Ûinrγ4

inr+





         

∑
i∈I

Minr(1− y∗i )γ6
inr +

∑
i∈I

Minry
∗
i γ

7
inr

)
, (109)

s.t. γ1
nr + γ2

inr − Ûinrγ3
nr ≤

1
|R|

θnp̂i ∀i ∈ I,∀n ∈ N,∀r ∈ R, (110)∑
i∈I
−γ3

inr − γ4
inr ≤ 0 ∀n ∈ N,∀r ∈ R, (111)

− γ4
inr − γ5

inr + γ6
inr ≤ 0 ∀i ∈ I,∀n ∈ N,∀r ∈ R, (112)

γ5
inr − γ6

inr + γ7
inr ≤ 0 ∀i ∈ I,∀n ∈ N,∀r ∈ R, (113)

γ1
nr ≤ 0 ∀n ∈ N,∀r ∈ R, (114)

γ2
inr ≤ 0 ∀i ∈ I,∀n ∈ N,∀r ∈ R, (115)

γ3
nr ≤ 0 ∀n ∈ N,∀r ∈ R, (116)

γ4
inr ≤ 0 ∀i ∈ I,∀n ∈ N,∀r ∈ R, (117)

γ5
inr ≤ 0 ∀i ∈ I,∀n ∈ N,∀r ∈ R, (118)

γ6
inr ≤ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R, (119)

γ7
inr ≤ 0 ∀i ∈ I,∀n ∈ N, ∀r ∈ R. (120)

Benders decomposition algorithm. Having derived the dual worker problem (109)-
(120), we can now outline the classical Benders decomposition algorithm for the choice-
based optimization problem with discrete variables:

1. Initialize the upper bound UB =∞ and the lower bound LB = −∞ of the master
problem.

2. Initialize the restricted master problem:

min
y,z

z (121)

s.t. Domain constraints on the y variables (122)

z ≥ LBz. (123)

The values of the master variables y∗ can be initialized set to any solution that
satisfies the domain constraints, while LBz is any valid lower bound of z, such as
the optimal objective value of the linear relaxation of (25)+(27)-(31).

3. Solve the dual worker problem (109)-(120) for y = y∗. Retrieve the optimal dual
variables γ1∗

nr, γ2∗
inr, γ3∗

nr, γ4∗
inr, γ5∗

inr, γ6∗
inr, γ7∗

inr. Let zDWP be the current optimal
objective value of the dual problem, and therefore also a valid solution of the primal.
Update UB = min{UB, zDWP}. (Notice that, given y∗, zDWP can be obtained





         

without solving an optimization model by computing the choice of each customer n
for each scenarios r, which corresponds to the available alternative with the highest
exogenous utility.)

4. Using the optimal dual variables, add the following optimality cut to the master
problem:

z ≥
∑
n∈N

∑
r∈R

(
γ1∗
nr +

∑
i∈I

γ2∗
inryi +

∑
i∈I
−Ûinrγ4∗

inr+

∑
i∈I

γ6∗
inrMinr(1− yi) +

∑
i∈I

Minrγ
7∗
inryi

)
. (124)

5. Solve the current restricted master problem. Save the solution yM , zM . Let f(yM , zM )
be the current optimal objective value. Update LB = f(yM , zM).

6. If UB − LB ≤ ε, then stop. Else, update y∗ = yM and go to step 3.

5 Future directions

In this paper, we look at a class of choice-based optimization problems in which all
decision variables of the supplier are discrete and finite. Numerical experiments show
that such a formulation is computationally more efficient than one which includes both
continuous and discrete variables. Discretizing continuous variables leads to trade-offs
between approximation in the solution and computational speed which must be evaluated
on a case-by-case basis. An interesting property of the proposed formulation with discrete
upper-level variables is that the lower-level optimization problem of the customer can be
expressed a continuous knapsack problem. This allows for a straightforward development
of a Benders decomposition algorithm for the problem. After reviewing the literature on
Benders decomposition, with a particular attention on stochastic optimization, we derive
the Benders decomposition algorithm for the problem at hand.

We envision the following topics to be of particular interest to progress on this research: (i)
develop a branch-and-Benders-cut algorithm for the problem and implement enhancements
both at the master problem level and at the subproblem level among those discussed
in Sections 3.2 and 3.3 that can speed-up the execution of the algorithm; (ii) conduct
further experiments to compare the computational performance of our approach against





         

a black-box MIP solver on an uncapacitated facility location and pricing problem with
disaggregate demand; (iii) investigate smart discretization techniques, possibly with online
updates of the expanded choice sets considered by the supplier; (iv) explore heuristic
approaches to exploit data at the scenario level and at the customer level.
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