How does transport supply and mobility behaviour impact preferences for MaaS bundles? A multi-city approach

Konstantin Krauss, Daniel J. Reck, Kay W. Axhausen

Fraunhofer ISI, Karlsruhe & IVT, ETH Zürich

13. September 2021

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich «MaaS is a framework for delivering a portfolio of multi-modal mobility services that places the user at the centre of the offer.»

- Mode choice behaviour
 - Motorized individual transport in focus (Storme et al., 2020)
 - Multimodality partly in focus (Matyas & Kamargianni, 2021)
- Bundling
 - PT bundles more attractive (Tsouros et al., 2021)
 - Tendency towards non-usage of bundles (Caiati et al., 2020)
- → Effect of different shared modes towards bundle choice?
- ➔ Role of prevailing transport supply and city characteristics?

Approach: Combination of data sets

Survey data: MaaS bundle choice

- Stated preference experiment: 4 choice sets per 8 blocks
- Population: People living in major German cities (83)
- n = 471

Variable		Sample
Gender	Female	43 %
Age	18-39	38 %
	40-59	47 %
	> 60	15 %
Monthly household net income ^a [EUR]	< 999	7 %
	1,000-2,999	46 %
	3,000-4,999	33 %
	>5,000	9 %
Ø no. cars in household		2
PT pass		56 %

^a Rest to 100% is none-response

Impact of mobility behaviour on bundle preferences

		"Micro"			"Moto"		
		Bundle	PAYG	χ^2	Bundle	PAYG	χ^2
Cars in household	0	+0.4		***		+8	**
	1	+3			+4		
	2	+0.1			+3		
	>2		+3		+1		
Private e-scooter	yes	+15		***	+11		***
	no		+15			+11	
PT pass	yes	+19		***	+29		***
	no		+19			+29	
Shared mobility usage	frequently	+6		***	+5		***
	regularly	+3			+5		
	seldom	+6			+9		
	never		+15			+19	

Impact of shared mobility supply on bundle preferences

- PT pass holders favour bundles
- "Micro" chosen by respondents with fewer cars
- "Moto" chosen by respondents with more cars
- Previous use of shared modes increases bundle choice
- Owning vehicles increases bundle choice
- Threshold-effect for shared mobility supply

- Integrating different modes in bundles mean different choices
- Choosing a bundle does not make shared mobility enthusiasts
- Take care of "undesired" mode shifts
- Cities need to finetune shared mobility supply

- Integrate socio-demographic, mobility behaviour, and supply characteristics in modelling approach
- Decompose shared mobility supply in cities
- Control for residence of respondents

Thanks!

Questions?

References

- Caiati, V., S. Rasouli and H. Timmermans (2020) Bundling, pricing schemes and extra features preferences for mobility as a service: Se-quential portfolio choice experiment, Transportation Research Part A: Policy and Practice, 131, 123–148.
- Hensher, D. A., C. Mulley and J. D. Nelson (2021) Mobility as a Service (MaaS) Going Somewhere or Nowhere, Sydney, Australia.
- Matyas, M. and M. Kamargianni (2021) Investigating heterogeneity in preferences for Mobility-as-a-Service plans through a la-tent class choice model, Travel behaviour & society, 23, 143–156.
- Reck, D. J., D. A. Hensher and C. Q. Ho (2020) MaaS bundle design, Transportation Research Part A: Policy and Practice, 141, 485–501.
- Storme, T., J. de Vos, L. de Paepe and F. Witlox (2020) Limitations to the carsubstitution effect of MaaS. Findings from a Belgian pilot study, Transportation Research Part A: Policy and Practice, 131, 196–205.
- Tsouros, I., A. Tsirimpa, I. Pagoni and A. Polydoropoulou (2021) MaaS users: Who they are and how much they are willing-to-pay, Transportation Research Part A: Policy and Practice, 148, 470–480.

Krauss, Konstantin, Reck, Daniel J. und Kay W. Axhausen (2021) How does transport supply and mobility behaviour impact preferences for MaaS bundles? A multi-city approach, Swiss Transport Research Conference, Monte Verità/Ascona, September 2021.