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Abstract

Reducing the number of fatalities caused by traffic accidents is a major concern of our modern so-
ciety. The existing literature generally deals with explaining the influence of directly observable
variables on the occurrence of crashes or on the severity of the injuries they cause. While these
studies provide valuable insights on the vulnerability of passengers in various seat positions,
types of vehicles and specific locations, driver behavior is usually not adequately considered.
In fact, only few published models include such attitudinal aspects, mainly because of data
limitations: crash data generally do not include behavioral characteristics or psychological
measurements.

We use the integrated "choice" and latent variable framework in order to account for unobservable
driver behavior in injury severity modeling and apply it to a dataset that contains information on
road accidents that occurred in Switzerland between 1992 and 2017. Specifically, we build a
latent variable that captures the "propensity to taking risks" that drivers may exhibit, based on a
number of socioeconomic characteristics and context variables. Among the latter, we include
a dummy variable that represents the entry into force of the Via Sicura road safety program.
Preliminary results show that our framework has the ability to the appropriately identify the
effect of driver behavior on injury severity, as well the influence of Via Sicura thereupon.
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1 Introduction

Reducing the number of fatalities caused by traffic accidents is a major concern of our modern,
motorized society. Everywhere around the world, efforts are made by governments, auto
manufacturers and transportation agencies to enhance road safety. In Switzerland, considerable
commitment in favor of safer infrastructure, vehicles and behavior has been carried out for the
past 50 years. As a result, the number of fatalities on Swiss roads has dropped from 1’694 in
1970 to 253 in 2015 and the number of severely injured individuals has decreased from 18’314
to 3’830 over the same interval (Swiss Federal Council, 2017).

More recently, in an effort to pursue such commitment, the Swiss Federal Council has initiated
a road safety program called Via Sicura. The program aims to further reduce the number of
fatalities and severe injuries by ensuring, to the greatest possible extent, that the Swiss road
network is used only by well-instructed and capable drivers. Starting in January 2013, a number
of legislative measures have come into force on a step-by-step basis. Most of these are preventive,
such as the ban on alcohol for new and professional drivers or the compulsory use of lights
during the day for all motor vehicles, but a number of repressive measures are also included.
Namely, a new, stricter legislation governing extreme speeding offenders and drunk drivers was
introduced at the very beginning of the program.

In this paper, we seek to measure the "dissuasive" effect of these repressive measures on the
risk-taking behavior of drivers and, in turn, the effect of such change in behavior on the severity
of the injuries suffered by individuals involved in road accidents. To this end, we first propose an
intuitive ordered logit that models individuals’ injury severity based on various factors related to
the individual, to his or her vehicle and to the characteristics of the crash. Notably, we include a
dummy variable that represents the entry into force of the Via Sicura repressive measures. In
a second phase, we leverage the integrated "choice" and latent variable (ICLV) framework to
account for the Via Sicura measures in a more appropriate way: we define a latent variable that
captures the propensity to taking risks that drivers may exhibit and base this risk-taking behavior
on a number of socioeconomic characteristics and context variables, including the Via Sicura
dummy variable. The models are estimated on a dataset that gathers information from police
reports of road accidents that occurred in Switzerland between 1992 and 2017.

We organize the remainder of this paper as follows: Section 2 provides a brief overview of
the existing literature on injury severity modeling; Section 3 introduces the methodological
approach we follow; Section 4 provides a brief description of the available dataset and Section 5
gathers the results obtained from the estimation of our models; finally, Section 6 summarizes the
findings of the present study and identifies the future steps of this research.





             

2 Literature review

Due to the importance of road safety all around the world, accident occurrence modeling and
crash-injury severity modeling have been active fields of research for decades. Since the first
accident occurrence model that included a regression component (Weber, 1970, 1971), a wide
variety of studies have investigated the effect of various factors on the occurrence of accidents or
on the injuries they cause. In the context of the latter, the existing literature deals with explaining
the influence of directly observable variables on the vulnerability of individuals in different types
of vehicles (de Lapparent, 2005, 2006, Xin et al., 2017), seat positions (de Lapparent, 2008,

Bogue et al., 2017), on different road types (Huang et al., 2008, Qiu and Fan, 2021, Choudhary
et al., 2018) or when involved in different types of accidents (Shankar and Mannering, 1996,

Kockelman and Kweon, 2002).

These studies are valuable in that they provide insights into the complex interactions that
vehicle, infrastructure, and human characteristics have on the resulting crash-injury severities;
nevertheless, the vast majority entirely omits the yet crucial effects of driver behavior from
their models. We see two obvious reasons for these omissions: (i) crash data generally do not
include behavioral characteristics or psychological measurements; and (ii) the specification and
estimation of models that enable the inclusion of attitudes and other latent constructs can be
extremely tedious.

Hence, to the best of our knowledge, and despite an ongoing stream of research concerned
with characterizing various driving behaviors (Tasca, 2000, Clapp et al., 2011, Scott-Parker and
Weston, 2017, Hu et al., 2021), only three studies attempt to include such attitudinal aspects
into their injury-severity models. We briefly discuss these, as they are of direct relevance to the
current study.

Nevarez et al. (2009) appear to be the first to account for driving behavior in their binary model
of injury severity. They do so by introducing an "aggressive driving" dummy variable that is
based on whether the driver was "speeding, tailgating, failed to yield right of way, changed
lanes improperly, or disregarded other traffic control". This simple approach is certainly an
improvement with regards to the abovementioned studies; however, by treating the aggressive
behavior as exogenous, the model is not capable of providing insights into measures that seek to
decrease injury severity by reducing aggressiveness in driving behavior.

In comparison, Paleti et al. (2010) include a similar dummy variable in their model, but treat
it as endogenous — their "latent aggressive driving act propensity" is defined as a function of
observed environmental, vehicle, crash and driver factors, in addition to an error term — and





             

interact it with a number of explanatory variables in the injury-severity model. The framework
proposed by Paleti et al. (2010) is therefore analogous to a latent segmentation scheme, the
segmentation being based on the "aggressive driving propensity" binary variable.

Finally, the more recent work of Lavieri et al. (2016) provides an additional example of injury-
severity models that accounts for driver behavior. In this case, two distinct behaviors — risky
and distracted driving — are modeled as latent variables and their manifestation is measured by
means of binary indicators. Not only is the use of indicators helpful in model identification and
in increasing the efficiency of the estimated parameters (Walker, 2001), but it also mitigates the
risks of endogeneity-related issues: in fact, the two indicators considered in conjunction with
the risky behavior — seat belt use and alcohol consumption — are known in the literature for
being particularly problematic when treated as exogenous.

3 Modeling approach

Our modeling approach is based on a rather straightforward conceptual framework. We assume
that the level of injury suffered by any person involved in a road accident may be explained by a
number of variables, each related to one of three hierarchical levels: (i) individual; (ii) vehicle;
and (iii) accident. The first level includes variables such as gender, age or seat belt use. The
second level gathers variables that are common to all occupants of a vehicle: the type of said
vehicle, the year of its entry into circulation, the number of children aboard, or the driver’s blood
alcohol level. Finally, the third level includes variables that are related to the accident itself, and
may therefore be common to the occupants of several vehicles. These include meteorological,
traffic and road conditions, the day-of-week and time of the accident, etc.

In addition to these directly observable factors, and in accordance with the existing literature,
we also include a latent variable that accounts for risk-taking behavior. Latent variables are
typically used to capture the effect of unobservable psychological constructs such as attitudes
and perceptions; in our case, we assume the risk-taking behavior to be explained by a number of
socioeconomic characteristics and context variables, among which we include the entry into
force of the Via Sicura repressive measures. We use seat belt use, substance consumption and
driving without a license as indicators, i.e., "indirect measurements" of the latent behavior.

Despite the hierarchical organization of the variables, we model injury severity at the indi-
vidual level. An appropriate way of taking into consideration the inherent correlation among
observations — both at the vehicle and accident levels — is currently being investigated.





             

3.1 Ordered logit model

Let n = 1, . . . ,N be an index representing individuals involved in road accidents; their observed
injury levels yn are reported on a discrete scale j = 1, . . . , J. For example, as in the data
considered for this study, index j may take values of "no injury" ( j = 1), "minor injury" ( j = 2),
"major injury" ( j = 3) and "fatal injury" ( j = 4).

We treat yn as the expressions of an underlying process characterized as

y∗n =

K∑
k=1

βkxnk + εn = un + εn, (1)

where y∗n is the actual severity of injuries suffered by individual n, xnk are K attributes deemed as
"explanatory" of that injury severity, βk are their associated coefficients, and εn is an error term
for which we assume εn ∼ Logistic (0, 1).

The dependent, continuous variable y∗n is mapped to the discrete injury levels by means of J + 1
strictly increasing thresholds, denoted as {τ0, τ1, . . . , τJ}, in the usual ordered-response fashion:
given that εn follows a logistic distribution, the probability of y∗n being reported as an injury of
level j may be computed as

Pn ( j) = P
(
τ j−1 < y∗n < τ j

)
= P

(
τ j−1 < un + εn < τ j

)
= F

(
τ j − un

)
− F

(
τ j−1 − un

)
, (2)

where F (·) denotes the cumulative distribution function of a logistic distribution with location
and scale parameters 0 and 1. The first and last thresholds are fixed to τ0 = −∞ and τJ = ∞,
whereas {τ1, . . . , τJ−1} are estimated. In the case where J = 4, as in the data considered for this
study, we make sure that the estimated thresholds verify −∞ < τ1 < τ2 < τ3 < ∞ by defining
two strictly positive parameters, δ1, δ2 > 0, and expressing τ2 and τ3 asτ2 = τ1 + δ1,

τ3 = τ1 + δ1 + δ2.
(3)

Together with all βk, parameters τ1, δ1 and δ2 are estimated through maximum likelihood.

3.2 Latent variable component

We now describe the inclusion of a latent variable and associated indicators in the ordinal logit
model of Section 3.1. Two sets of equations are needed for this purpose: (i) a structural equation





             

that includes the factors influencing the latent variable; and (ii) several measurement equations,
each describing the relationship between the latent variable and one of its indicators.

The structural equation characterizing a single latent variable z∗n is written as

z∗n = γ0 +

L∑
`=1

γ`xn` + ωn, (4)

where γ0 is an intercept, γ` are L coefficients, each associated with one explanatory factor xn`,
and ωn ∼ N (0, σω) is an error term. It is worth noting that xnk from (1) and xn` may share
a number of common variables, when such variables are assumed to have an impact both on
the injury severity y∗n and the latent variable z∗n. Also, because the latent construct is typically
considered as an additional explanatory variable in the former model, we can rewrite (1) as

y∗n =

K∑
k=1

βkxnk + βzz∗n + εn, (5)

where βz is the coefficient capturing the effect of the latent variable on the injury level y∗n.

As regards the measurement equations, we define a number of continuous indicators I∗in that, in
our case, solely depend on the latent variable z∗n. Each indicator is expressed as

I∗in = αi,0 + αi,1z∗n + νin, (6)

where αi,0 is an intercept, αi,1 is the coefficient measuring the effect of the latent variable on the
i-th indicator and νi,n is an error term for which we assume νin ∼ N (0, σi). The manifestations
of the latent variable, denoted Iin, are typically encoded as discrete. The indicators I∗in therefore
need to be "discretized", which can be achieved in a similar fashion as explained in Section 3.1;
the only difference resides in the probabilistic distribution the error terms are assumed to follow
in each case, but that is seamlessly taken care of. For instance, as in this study, the considered
indicators are binary, which is equivalent to dealing with a two-level discrete scale. Given that
νin follows a normal distribution, the outcome probabilities of I∗in are computed as

P (Iin = 0) = P
(
I∗in < µi

)
= P

(
αi,0 + αi,1z∗n + νin < µi

)
= Φ

(
µi − αi,0 − αi,1z∗n

σi

)
,

P (Iin = 1) = 1 − P (Iin = 0) = 1 − Φ

(
µi − αi,0 − αi,1z∗n

σi

)
,

(7)

where Φ (·) denotes the cumulative distribution function of a normal distribution N (0, 1) and µi

is a threshold associated with the i-th indicator; its value is to be estimated.





             

3.3 Estimation and identification

The ordered logit model is straightforwardly estimated through maximum likelihood estimation.
One should nevertheless note that (1) does not include an intercept, for identification purposes:
in fact, all threshold parameters are estimated instead. The decision to estimate all thresholds
rather than fixing one and estimating an intercept instead is arbitrary.

In comparison to the ordered logit, the estimation of the hybrid model is more complex. Despite
the higher computational cost, we choose to estimate both components of the model simul-
taneously rather than sequentially. Indeed, simultaneous estimation is known to be superior
because it produces consistent and efficient parameter estimates (Walker, 2001). We also prefer
numerical integration over simulation due to the size of our dataset, but this is only possible
because our model includes a single latent variable. Finally, a number of parameters need to be
normalized for identification purposes; these are discussed in Section 5.2.

4 Data description

The data under consideration are derived from police reports of road accidents that occurred
in Switzerland between 1992 and 2017.1 In total, after discarding irrelevant and incomplete
observations, the dataset used for model estimation contains information about 434’038 crashes,
662’903 vehicles — pedestrians are treated as such — and about the 831’372 occupants of these
vehicles. Almost 95% of all accidents involve either one or two vehicles, whereas only 4.9% of
the vehicles have more than two occupants.

As mentioned above, the dataset contains a variety of features that are organized into three
hierarchical levels. At the highest level, the variables describe the context of the accident, which
is common to all individuals involved in the crash. The intermediate level gathers the attributes
of the vehicles and their drivers; these are therefore shared by all their occupants. Finally, the
lowest level groups characteristics relative to single individuals. The severity of the injuries
suffered by individuals involved in the accidents are reported on a four-level scale: (i) no injury;
(ii) minor injury; (iii) major injury; and (iv) fatal injury. Table 1 presents an overview of the
descriptive characteristics of the dataset.

1Verkehrsunfall Jahresdatensatz (DWH-VU), Federal Roads Office FEDRO.





             

Table 1: Descriptive characteristics of the dataset. Selected attributes from the three levels.

Accident level (434’038 observations)

Accident type:
frontal collision 20’374 4.7 %
while parking 25’810 5.9 %
pedestrian involved 18’210 4.2 %

Traffic volume:
normal 290’314 66.9 %
high 67’231 15.5 %
unknown 76’493 17.6 %

Speed limit [km/h]:
10 – 30 26’595 6.1 %
40 – 50 226’961 52.3 %
60 – 80 136’732 31.5 %
100 – 120 43’750 10.1 %

Time of the accident:
late night (10PM – 5AM) 91’264 21.0 %

Visibility:
reduced 6’985 1.6 %

Road conditions:
wet / snowy / icy 86’837 20.0 %

Vehicle level (662’903 observations)

Vehicle type:
cars & similar 560’532 84.6 %
two-wheelers 53’122 8.0 %
soft modes 31’052 4.7 %
pedestrians 18’197 2.7 %

Driver’s license:
no license 2’806 0.4 %

Substances consumption:
alcohol 120’241 18.1 %
drugs / medicines 4’911 0.7 %

Driver’s protection:
seat belt (cars & s.) 528’747 79.8 %
helmet (two-w. / soft m.) 58’607 8.8 %

Individual level (831’372 observations)

Gender:
female 273’358 32.9 %
male 558’014 67.1 %

Age:
0 – 9 26’575 3.2 %

10 – 19 73’560 8.8 %
20 – 29 193’678 23.3 %
30 – 39 147’670 17.8 %
40 – 49 143’051 17.2 %
50 – 59 116’993 14.1 %
60 – 69 68’987 8.3 %
70 – 79 41’385 5.0 %
80 – 89 17’819 2.1 %
90 + 1’654 0.2 %

Level of injury:
none 643’296 77.4 %
minor 147’572 17.8 %
major 37’614 4.5 %
fatal 2’890 0.3 %

5 Modeling results

5.1 Ordered logit model

We begin by presenting the intuitive — i.e., oversimplified — ordered logit model. Individual
injury severity is assumed to be a function of the following explanatory variables:2

2The exact specification is provided in the Appendix.





             

• Via Sicura — we define a binary variable that takes value 1 for all crashes that occurred
on the 1st of January 2013 or later. The date corresponds to the entry into force of the Via
Sicura repressive measures. We denote by B_VIA_SICURA the parameter that captures
the effect of said variable;

• accident type — we include three dummy variables that equal to 1 for crashes documented
as frontal collisions, as "while parking" or as involving pedestrians, respectively. The
parameters associated with these are B_FRONTAL_COLLISION, B_WHILE_PARKING

and B_PEDESTRIAN_INVOLVED;
• speed limit — this serves as a proxy for the actual vehicle speed. For it to be more realistic,

we interact it with a variable that describes the traffic volume at the time of the crash —
normal, high and unknown. The parameters are B_MAX_SPEED_TRAFFIC_NORM,
B_MAX_SPEED_TRAFFIC_HIGH, and B_B_MAX_SPEED_TRAFFIC_UNK;
• vehicle type — captured by means of three parameters, namely B_TWO_WHEELER,

B_SOFT_MODE and B_PEDESTRIAN. The two-wheeler category includes all two-wheel
motorized vehicles, whereas soft modes include all non-motorized vehicles. Cars are used
as the reference, together with all other private and motorized vehicles;

• vehicle’s year of entry into service — newly-built motorized vehicles are ever safer. We
simplistically assume the effect to be linear and capture it by means of B_YEAR_ENTRY;

• seat belt use — encoded as a binary variable. Its effect is captured by parameter B_belt;
• gender — captured by B_FEMALE;
• age — B_AGE_FEMALE and B_AGE_MALE capture the effect of age differently, depend-

ing on the individual’s gender. In addition, B_AGE_SQ_MALE captures the effect of the
square of age for men. Its equivalent for women is not statistically significant.

Table 2 provides the estimation results of the ordered logit model. All parameter estimates
appear to be significant — which was to be expected, given the number of observations — and
all display the expected signs. As a reminder, parameters τ1, δ1 and δ2 define the thresholds used
to map the continuous injury severity to the reported discrete levels.

5.2 Hybrid model

We now discuss our hybrid model. The main difference with the previous one is the inclusion —
according to the method introduced in Section 3.2 — of a latent variable that represents the
risk-taking behavior that some drivers may exhibit. The behavior is modeled as a continuous
variable and is included in the model among the factors that explain the injury severity. It is
important to note that as opposed to the previous model, the risk-taking behavior should be
modeled at the vehicle level. In fact, it is reasonable to assume that the severity of injuries of all





             

Table 2: Ordered logit model. Parameter estimates.

Parameter Value Rob. t-test

B_VIA_SICURA −0.151 −23.8
B_FRONTAL_COLLISION 0.455 34.9
B_WHILE_PARKING −1.84 −77.2
B_PEDESTRIAN_INVOLVED −0.973 −46.9
B_MAX_SPEED_TRAFFIC_NORM 0.536 53.2
B_MAX_SPEED_TRAFFIC_HIGH 0.324 30.6
B_MAX_SPEED_TRAFFIC_UNK 1.45 82.6
B_TWO_WHEELER 1.71 110
B_SOFT_MODE 1.80 62.0
B_PEDESTRIAN 2.86 78.4
B_YEAR_ENTRY −0.102 −8.22
B_BELT −1.54 −121
B_FEMALE 0.411 29.2
B_AGE_FEMALE 0.00432 17.9
B_AGE_MALE 0.000768 3.67
B_AGE_SQ_MALE 0.0000632 6.60

τ1 0.600 20.3
δ1 2.41 376
δ2 2.87 157

Sample size 831’372
Final log likelihood −431’404
Number of est. parameters 18

occupants of a vehicle depend on the driver’s behavior, rather than theirs. That would be but an
issue had the latent variable component to be estimated on its own; however, as discussed in
Section 3.3, the two components need to be estimated simultaneously. For this reason, we define
a number of variables that solely relate to the drivers and propagate them to all occupants of their
respective vehicles, so as to model both the injury level and the risky driving behavior at the
individual level. A potential flaw of this approach is that the behavior of drivers accompanied by
several passengers is overrepresented, which may lead to biased estimates in the measurement
equation of the latent variable; we still go along with it for its ease of implementation and
because the vast majority of vehicles in the dataset have a single occupant. Finally, we also
assume that the risk-taking latent variable is always equal to zero for pedestrians.

We begin by describing the structural equation of the latent variable. We assume the risk-taking
behavior of drivers to be explained by the following factors:3

3Once again, the exact specification is provided in the Appendix.





             

• Via Sicura — taken into account as in the previous model, except it now affects the
latent behavior rather than injury severity. We denote by coef_via_sicura its associated
parameter;

• time of the accident — we define a binary variable that equals to 1 for accident that
occurred between 10PM and 5AM and to 0 otherwise. The influence of this variable on
the risk-taking behavior is measured by coefficient coef_late_night;

• visibility — similarly, we define a dummy variable that takes value 1 if the visibility
was reduced at the time of the accident and 0 otherwise. Its associated parameter is
coef_bad_visibility;

• road conditions — we assume the effects of wet, snowy and icy roads to be similar in
magnitude on the driver’s propensity to taking risks. These are therefore captured by a
single coefficient, denoted coef_bad_road;

• passengers’ age — we define a binary variable that is equal to 1 if at least one of
the occupants of the vehicle is 12 years old or younger. The associated parameter is
coef_child_aboard;

• driver’s gender — captured by coef_female_driver.

As regards the measurement equations, the three indicators are defined as follows:

• driver’s substances consumption — we define a variable that takes value 1 for drivers
who were positively tests for alcohol, medicines or drugs, and 0 otherwise;
• driver’s protection — similarly, we define a binary variable that equals 1 for car drivers

who do not use the seat belt or for two-wheeler drivers who do not wear a helmet;
• driver’s license — we define a dummy variable that is equal to 1 for drivers who drive

vehicles that require a license without ever possessing one.

Table 3 provides the estimation results of the hybrid model. While the magnitudes of the
parameter estimates cannot be directly compared with the ones in the previous table, we may
still note that they have the expected signs. In particular, B_RISKY, the coefficient associated
with the risk-taking behavior, is positive: the higher the risks taken by the driver, the more severe
the injuries of all occupants of the vehicle. The signs of the parameters associated with the
explanatory variables of the latent behavior are also realistic; it is reasonable that drivers take
more risks at night, whereas limited visibility and poor road conditions have the opposite effect.
Additionally, the results suggest that female drivers and drivers accompanied by children display
less risky behavior. The coefficient capturing the effect of the Via Sicura repressive measures,
coef_via_sicura, is also negative and its magnitude is comparable to the other parameters.
For identification purposes αsubstances,0 and αsubstances,1 are normalized; σsubstances, σno_license and
σno_protec cannot be estimated because the indicators are binary.





             

Table 3: Hybrid model. Parameter estimates.

Parameter Value Rob. t-test

coef_intercept 54.4 68.5
coef_via_sicura −71.0 −67.5
coef_late_night 96.0 68.2
coef_bad_visibility −14.0 −40.9
coef_bad_road −9.01 −58.2
coef_child_aboard −30.5 −58.5
coef_female_driver −28.4 −68.9

σω 67.7 −68.8

αsubstances,0 0 —
αno_license,0 −2.20 −568
αno_protec,0 −1.41 −1100

αsubstances,1 1 —
αno_license,1 0.00296 36.9
αno_protec,1 0.00326 58.6

σsubstances 1 —
σno_license 1 —
σno_protec 1 —

µsubstances 95.9 68.1
µno_license 0.590 153
µno_protec 0.143 111

B_RISKY 0.00293 42.5
B_FRONTAL_COLLISION 0.466 35.5
B_WHILE_PARKING −1.81 −75.7
B_PEDESTRIAN_INVOLVED −0.948 −45.4
B_MAX_SPEED_TRAFFIC_NORM 0.600 59.5
B_MAX_SPEED_TRAFFIC_HIGH 0.416 38.8
B_MAX_SPEED_TRAFFIC_UNK 1.07 56.1
B_TWO_WHEELER 1.82 117
B_SOFT_MODE 1.96 67.0
B_PEDESTRIAN 3.03 82.6
B_YEAR_ENTRY −0.0692 −5.58
B_BELT −1.45 −115
B_FEMALE 0.503 35.3
B_AGE_FEMALE 0.00455 18.6
B_AGE_MALE 0.000899 4.26
B_AGE_SQ_MALE 0.000108 11.0

τ1 0.956 32.0
δ1 2.42 377
δ2 2.88 157

Sample size 831’372
Final log likelihood −940’907
Number of est. parameters 34





             

6 Conclusion

In this study, we show how the integrated choice and latent variable framework allows for the
inclusion of behavioral constructs in a standard injury-severity model. The resulting hybrid
model enables the dissuasive effect of repressive measures to be captured, in a way that is more
appropriate than including it among the explanatory variables of injury severity. The estimation
results show that our model is coherent, realistic and in line with the findings of the existing
literature.

This study constitutes a first step toward a comprehensive accident-occurrence and injury-
severity model that could serve as a tool for the assessment of the impact of public policies in a
global way. Intended future work specific to the developed hybrid model includes the definition
of additional driving behaviors, such as aggressive, distracted or defensive driving. Also, further
investigation should focus on better taking into consideration the inherent correlation among
observations at the vehicle and accident levels.
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Appendix

Ordered logit model: specification of the continuous injury severity

u = B_VIA_SICURA * (year >= 2013) +

B_FRONTAL_COLLISION * (acc_type == ’frontal_collision’) +

B_WHILE_PARKING * (acc_type == ’while_parking’) +

B_PEDESTRIAN_INVOLVED * (acc_type == ’pedestrian_involved’) +

B_MAX_SPEED_TRAFFIC_NORM * (max_speed/100)**2 * (traffic == ’normal’) +

B_MAX_SPEED_TRAFFIC_HIGH * (max_speed/100)**2 * (traffic == ’high’) +

B_MAX_SPEED_TRAFFIC_UNK * (max_speed/100)**2 * (traffic == ’unknown’) +

B_TWO_WHEELER * (veh_type == ’two_wheeler’) +

B_SOFT_MODE * (veh_type == ’soft_mode’) +

B_PEDESTRIAN * (veh_type == ’pedestrian’) +

B_YEAR_ENTRY * (year_entry/1000) +

B_BELT * (protection == ’belt’) +

B_FEMALE * (gender == ’female’) +

B_AGE_FEMALE * (gender == ’female’) * age +

B_AGE_MALE * (gender == ’male’) * age +

B_AGE_SQ_MALE * (gender == ’male’) * (age-40)**2

Hybrid model: specification of the risk-taking behavior

r = (veh_type != ’pedestrian’) * [coef_intercept +

coef_via_sicura * (year >= 2013) +

coef_late_night * ((time >= 22) OR

(time < 5)) +

coef_bad_visibility * (bad_visib == 1) +

coef_bad_road * (road_cond == ’wet’ OR

road_cond == ’snowy’ OR

road_cond == ’icy’) +

coef_child_aboard * (child_aboard == 1) +

coef_female_driver * (female_driver == 1)]
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