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Abstract

Ordinal scale responses capture qualitative user feedback which can be used to model individual
choice preference, or are employed in traffic accident analysis to evaluate accident severity.
We present a new choice model for ordinal scale responses in choice tasks that combines a
Multinomial Logit model with a Poisson probability mass function. The Poisson distribution,
which is suitable for modelling the occurrence of the number of events in a fixed time frame,
independent of previous events, can be adapted into the unobserved error distribution of a
standard MNL model to capture the natural ordering of the choices by imposing a unimodal
constraint on the a posteriori choice probability. In this paper we describe the theoretical
framework and the specification of the Unimodal Logit model. We apply our model to evaluate
accident severity concerning road collisions. Our results are compared against the traditional
ordered logit model and the MNL model.
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1 Introduction

Ordinal scale responses such as public transport satisfaction or driver star-rating in ride-hailing
services, capture qualitative user feedback which is usually used to model individual choice
preference among a set of ranked options (Krueger et al., 2019, Tirachini and del Río, 2019,

Fu, 2020, Loa and Habib, 2021). In transportation ordinal scale responses are also employed in
traffic accident analysis to evaluate crash severity (Kaplan and Prato, 2012, Zeng et al., 2019). A
distinguishing feature of such choice sets is that the responses have an inherent correlation with
other alternatives in the set based its proximate covariance (Small, 1987).

The earliest example of using ordering information for regression is the Proportional Odds Model
(McCullagh, 1980). The choice categories are described as contiguous intervals on a continuous
scale and the points of division between intervals are assumed to be unknown. Ordered Logit or
Generalized Ordered Logit models are derived based on defining an unobserved latent variable
that varies across the contiguous intervals that depends on exogenous features of the choice and
the choice is specified as a probability function of lying in any one of the contiguous intervals.

Alternatively, using a classical multinomial logit (MNL) model is also possible. The MNL
model is computationally tractable, simpler to model and interpret, but is generally not suitable
for ordered choice modelling tasks for a number of reasons. In particular, although the MNL
model might produce relatively good model fit, the MNL model and its variants such as the
Nested Logit (NL), Probit or Mixed Logit (ML) model do not conform to the specification of
the ordered nature of ranking data (Train, 2003). Although the Ordered Logit is widely used
to this day to model data with a natural ordering of choices, it relies on the basic Proportional
Odds concept of a continuous scale and contiguous interval method.

Our proposed approach to modelling ordered choice data uses a familiar perspective of a utility
error correction term. This study develops a new choice model – the Unimodal Logit Model
which employs a Poisson distribution function in the utility error correction term to account
for proximity correlation between alternatives. Our proposed model focuses on the idea of
constrained unimodality (Hall et al., 2001). Imposing this constraint accounts for the proximity
correlation between alternatives and non-correlated attributes in discrete choice data without
fixed thresholds. We hypothesize that imposing such constraint leads to better model fit without
increasing the number of parameters of the model.

Unimodality in artificial neural networks for ordered objects classification have been studied
previously (da Costa et al., 2008, Beckham and Pal, 2017). In this study, we adopt similar
approaches for discrete choice modelling. The unimodal constraint is the ordering nature of the
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choices where the further a choice is from the desired option, the less probable it is to be selected,
with respect to the selected choice. The Poisson distribution, which is suitable for modelling
the occurrence of the number of events in a fixed time frame, independent of previous events,
can be adapted into the unobserved error distribution of a standard MNL model to account for
the proximity of the ranking order of choices. The expected value of the Poisson distribution is
expressed as an unconstrained variable in the model that captures the latent response variable and
the alternative specific observed utility component captures the attractiveness of the alternative.
Our assumption is that the distribution of ordered choices should follow a unimodal distribution.
The unimodality constraint imposed by the new error correction term in the utility would penalize
the probabilities of non-chosen alternatives based on the ordering proximity.

2 Background

2.1 Modelling ordered choice

Discrete choice analysis aims to model the determinants of preferences of individuals over a
set of choices. We assume that in a choice decision, there are J alternatives (i = 1, ..., J) and
the utilities for individual n = 1, ...,N are given by Un1, ...,UnJ. Let yni = 1 denote that the
individual n prefers alternative i and yni = 0 otherwise, implying that Uni ≥ max{Un1, ...,UnJ}

when yni = 1.

The random utility theory assumption is that the decision maker knows all utilities Un1 to UnJ but
the analyst does not observe those utilities, therefore the utilities are defined as Uni = Vni + εni,
where Vni are the observed characteristics and εni are the unobserved components of the utility,
assumed to be independently and identically distributed (i.i.d.), εni ∼ Gumbel(0, 1). This leads
to the MNL model expression for the probability of the decision maker selecting alternative i

(McFadden, 1974):

P(yni = 1) = P(Uni ≥ max{Un1, ...,UnJ}) =
exp(Vni)∑J

j=1 exp(Vn j)
(1)

where Vni is modelled as a linear function of the characteristics of the individual n and alternative
i. For example: Vni =

∑
m βimxnm with m characteristics and βim is an alternative specific

parameter associated with alternative i.

For choices with natural ordering, the i.i.d. assumption does not hold, and the unobserved error
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component depends on some proximity measure between the alternatives. For example, in a
vehicle ownership model where the choice set is the number of household vehicles, any decision
maker choosing alternative j would prefer j to j − 1, j − 1 to j − 2, j − 2 to j − 3, and so on
(Sheffi, 1979). When the alternatives are ordered along a dimension which provides a natural
rank relative to other alternatives, the unobserved error components close to each other should
be more correlated than the error components further away (Small, 1987).

2.2 Ordered Logit model

To deal with ordinal choices, the analyst can treat the problem as a linear regression and use a
squared error loss function to model the choice as count-data. Although this takes into account
the proximity of the choices, it is not an ideal approach as it assumes that choices are continuous
real-valued instead of discrete classes. The Ordered Logit model is a type of ordered response
model based on the cumulative probabilities of the response variable and the logit is assumed
to be a linear function of the attributes and regression coefficients which is constant across the
responses. This approach is used to account for the proximity between the responses while
retaining the discrete nature of the response. The most prominent method is to transform the
responses into a cumulative response inequality:

yni = 1 ⇔ y∗n ≤ τ1 for i = 1 (2)

yni = 1 ⇔ τi−1 < y∗n ≤ τi for i = 2, ..., J − 1, and (3)

yni = 1 ⇔ τJ < y∗n for i = J (4)

The response variable (ratings, severity, agreeableness, etc.), are assumed to be derived from a
latent variable y∗. For instance, in the Presidential questionnaire example given in Train (2003),
a latent variable is used to represent the opinion of the respondent, where a higher or lower level
of y∗ means the President is doing a better or poorer job respectively, and the choice task is to
select from 5 possible ranked responses (i = 1 to i = 5) where 1 is “very poor job” and 5 is “very
good job”. This latent variable is defined as a linear function of exogenous variables:

y∗n =
∑

m

βmXmn + εn, for n = 1, 2, ...,N (5)

where Xmn represents the attributes that enter the latent variable. The parameters βm are the
constant across all alternatives. The way the attributes Xmn enter the latent variable is defined by
the analyst, but it was suggested by convention to use a linear form, which produces a familiar
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random utility function (Greene and Hensher, 2010). The motivation to use this method is that
there is an unobserved component that is a linear function of exogenous Xmn variables and a
random variable εn. The probability of y∗n lying in each range of thresholds (τ1 to τ4) varies with
βmXmn. The decision maker chooses the alternative from the reference point of y∗n given the set of
thresholds between each alternative. Existing methods for modelling ordinal data are based on
post-hoc cut-off points, and only after estimation that these points can be evaluated. The ordered
logit can be interpreted as a censoring of the underlying latent variable which ranges over all
real numbers: −∞ < y∗n < ∞, the thresholds τ j are in increasing order (τ1 < τ2 < ... < τJ−1),
individual specific, with J − 1 number of thresholds, where J being the number of possible
choices. The choices 1 through 5 can be represented as:

1 if y∗n < τ1,

2 if τ1 ≤ y∗n < τ2,

3 if τ2 ≤ y∗n < τ3,

4 if τ3 ≤ y∗n < τ4, and

5 if τ4 ≤ y∗n

The difference between two adjacent thresholds (e.g. between τ2 and τ3) are assumed to be the
same for all individuals and the thresholds are defined as an estimable parameter in the choice
model (Greene and Hensher, 2010). The parameters βm in the latent variable y∗n are not indexed
by the alternatives and so the effects of the parameters are constant across the responses. If we
add a constant to the latent variable, the model would not be identified, as the operation can
be cancelled by subtracting the same value from each threshold, and it would not change the
probabilities. This can be resolved by fixing the first threshold to τ1 = 0.

For the ordered logit model to be estimated, the choice probability is written as:

P(yn > i) =
exp(τi −

∑
m βmXmn)

1 + exp(τi −
∑

m βmXmn)
, for i = 1, 2, ..., J − 1 (6)

The above equation corresponds to taking the sigmoid function: sigmoid(x) = 1/(1 + exp(−φ))
where φ =

∑
m βmXmn − τi. The probability expression for individual n choosing alternative i is

simply the difference between P(yn > i) and P(yn > (i − 1)):

P(yn1 = 1) = 1 −
exp(τ1 −

∑
m βmXmn)

1 + exp(τ1 −
∑

m βmXmn)
(7)
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P(yni = 1) = P(yn > (i − 1)) − P(yn > i) (8)

=
exp(τi−1 −

∑
m βmXmn)

1 + exp(τi−1 −
∑

m βmXmn)
−

exp(τi −
∑

m βmXmn)
1 + exp(τi −

∑
m βmXmn)

, for i = 2, ..., J − 1 (9)

P(ynJ = 1) =
exp(τJ−1 −

∑
m βmXmn)

1 + exp(τJ−1 −
∑

m βmXmn)
(10)

2.3 Generalized Ordered Logit model

A limitation of the ordered logit model is the proportional odds assumption – the ratios between
each pair of choices are equal. The Generalized Ordered Logit model relaxes this assumption
by modifying the latent variable into a vector, expressed as a function of alternative specific β
parameters (Maddala, 1986, Eluru et al., 2008) and the expression is formulated as:

P(yn > i) =
exp(τi −

∑
m βimXmn)

1 + exp(τi −
∑

m βimXmn)
, for i = 1, 2, ..., J − 1 (11)

Wang and Abdel-Aty (2008) and Quddus et al. (2010) further combined alternative specific and
generic β parameters in the latent variable function: y∗n =

∑
m βmXmn +

∑
m βimXmn + εn. To ensure

that the cut-offs retain the increasing order condition (τ1 < τ2 < ... < τJ−1), Eluru et al. (2008)
described the following linear function for the threshold:

τi = τi−1 + exp(
∑

m

δimZimn) (12)

where δim are the estimated parameters and Zimn are the exogenous variables associated with the
i-th cut-off. Studies have used the Generalized Ordered Logit model to model the underlying
risk factors of bus accident severity in the United States (Kaplan and Prato, 2012), effects of
driver concentration while driving on crash injury severity in Ethiopia (Abegaz et al., 2014), and
sustained injuries in an e-bicycle crash model in China (Wang et al., 2018).

Flexible forms of the Generalized Extreme Value (GEV) class of models (Ben-Akiva et al.,

2002) have also been suggested as a way to handle ordered responses due to its consistency
with random utility theory. One of which is the Ordered GEV (OGEV) model, which accounts
for the correlation between choices of close proximity (Small, 1987). The OGEV model is an
extension of the GEV model where each ordered choice alternative is a member of a nest with
one or more adjacent alternatives based on their ordering structure. This specification allows for
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outcomes to be ordered, while still providing the flexibility of the MNL model. By changing the
number of alternatives and the nest parameters in each nest, the OGEV can capture different
levels of cross-elasticity. The OGEV is described with the following choice probability (Wen
and Koppelman, 2001):

P(yni = 1) =

i+R∑
r=i

 wr−i exp(Vni)1/µr∑
j∈Br

wr− j exp(Vn j)1/µr
×

(
∑

j∈Br
wr− j exp(Vn j)1/µr )µr∑J+L

s=1 (
∑

j∈Bs
ws− j exp(Vn j)1/µs)µs

 (13)

where j∈Br is the set of overlapping alternatives in nest r. L is a positive integer that defines the
maximum number of contiguous alternatives in the nest. w≥0 is the allocation weight of the
alternative to the nest and the sum of all weights is equal to one. exp(Vni/µ) = 0 for i < 1 and
i > J, and 0 < µr≤1. This model reduces to an MNL model when µr = 1 ∀ r (Small, 1987).

The main structural difference between the OGEV and the Ordered Logit is that the former does
not require the estimation of a set of cut-off points. The lack of the need to specify a latent
variable makes the OGEV model more flexible in setting different correlation patterns.

Although the Generalized Ordered Logit and OGEV models are suitable for handling potential
ordering of the choice preference, neither fully account for heterogeneity of outcomes. For
instance, in ride-hailing services, the platform is designed to encourage drivers and passengers
to stay on the platform, hence using a rating system to incentivize the experience (Fielbaum and
Tirachini, 2020). Therefore, there might be unobserved heterogeneity between a 5 star-rating
choice compared to a 4 or 3 star-rating which might not be captured in the ordered logit model
specification.

2.4 Other extensions to Ordered Logit

The Dogit OGEV (DOGEV) extension model developed by Fry and Harris (2005) combines
both item preferences and ordering of outcomes as a two-part choice generating process. The
Dogit model allows some subsets of relative probabilities to be determined consistently within
the irrelevant alternatives (IIA) axiom, while other subsets are not (Gaundry and Dagenais, 1979).
It simultaneously accounts for correlation among pairs of alternatives, yet flexible enough to
allow for IIA. The Dogit model is defined by the following (see Gaundry and Dagenais (1979)):

P(yni = 1) =
exp(Vni) + θi

∑
j exp(Vn j)

(1 +
∑

j θ j)
∑

j exp(Vn j)
(14)
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The property of the Dogit model is that the probability ratio of any two alternatives can be
dependent on several or all alternatives. Gaundry and Dagenais (1979) showed that the Dogit
specification captures additional parameters to the MNL model, interpreted as a “captivity”
coefficient. Therefore it allows for respondents to be drawn towards a specific ranked choice if
the choice has a certain level of attractiveness.

Despite the strong theoretical foundation of the DOGEV model and being able to capture
the latent effects in the choice process consistently within the general random utility theory
framework, few applications of this model in transportation science literature can be found.
Habib and Weiss (2014) suggest a lack in commercial estimation software has limited Dogit
type models in use for modelling behavior.

3 The Unimodal Logit

3.1 Unimodality in ordered choices

In the Ordered Logit model, the posterior probabilities are not guaranteed to be unimodal,
although the thresholds are assumed to be in ascending order. To illustrate how a non-unimodal
probability mass function (pmf) generates undesirable properties in an ordinal choice problem,
we show two different choice scenarios (scenario 1, s1 and scenario 2, s2) in Figure 1. Both
scenarios are assumed to be modelling the same ordinal data and the selected choice for an
observation in both scenarios is 2 (“disagree”).

We assume that maximum likelihood estimation is used in both scenarios. Although the estimates
in both s1 and s2 might have identical probability mass for choice 2, and therefore, similar log
likelihood value, ln(P(ys1 = 2)) = ln(P(ys2 = 2)), the posterior probability mass of s1 does not
make sense. This is because maximum likelihood estimation only takes into account the logsum
of the selected choice. The unimodal probability distribution of s2 is preferred as the probability
mass decreases to the left and right of the desired choice.

3.2 Model specification

When a natural ordering of alternatives appears in the choice set, we can impose a unimodal
constraint on the pmf. Specifically, the a posteriori choice probabilities are unimodal. This mild
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Figure 1: Maximum likelihood estimation ignores the relationships and ordering nature between
classes. In this example, both scenario estimates an identical likelihood function, but
the unimodal distribution on the right is more preferable for ordinal data than the
distribution on the left.

assumption, in conjunction with the alternative specific utility function, enables the ordering of
the alternatives to be captured in the unobserved error terms. Using the Presidential question
example again with five options: [“very poor job”, “poor job”, “neutral”, “good job”, “very
good job”] labeled 1 through 5 respectively, assume of the highest a posteriori probability is
P(yn4 = 1|X), then the next highest a posteriori probability should be adjacent to yn4 and the a

posteriori probabilities should be monotonically decreasing to the left and right of P(yn4 = 1|X).
It would not be logical if the second highest likely option is P(yn1 = 1|X) after P(yn4 = 1|X), as
it would not make sense if a decision maker’s opinion jumps from “good job” to “very poor job”
to “very good job”.

We say that the Unimodal Logit model captures natural ordering of the choices if there exist an
integer c ∈ J such that:

p(yni|X) ≥ p(yni+1|X), for all i ≥ c and,

p(yni−1|X) ≤ p(yni|X), for all i ≤ c

In the Poisson pmf, the probability of i occurrences of an event in a set of N observations is
defined as:

P(i) =
λiexp(−λ)

i!
, for i = 0, 1, 2, .. (15)

where λ is the mean of the pmf. If we take P(i) to be the a priori of an ordinal response, and
the number of occurrences i to be equivalent to the ordinal choice selection, then a unimodal
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distribution can be enforced by including ln(P(i)) as the adjustment term in the systematic part
of the utility of each alternative i:

Uin = Vin + ln(P(i)) + εin (16)

= Vin + ln
(λiexp(−λ)

i!

)
+ εin (17)

= Vin + i ln(λ) − λ − ln(i!) + εin (18)

In the form of an MNL choice probability, we have:

P(yni = 1) =
exp(µΦin)∑J

j=1 exp(µΦ jn)
, (19)

and

Φin = Vin + i ln(λ) − λ − ln(i!) + βi0 (20)

where µ ≥ 0 is the scale parameter and βi0 is an alternative specific constant to capture the mean
of the error term. For consistency, we include Vin in the utility function. Since the alternatives
are associated with the same subject in question, this term is not very useful from an ordinal
response choice standpoint (Small, 1987). The utility function in Equation 20 can be rearranged
into:

Uin = Vin − λ + f (λ, i) + εin (21)

where the proximity correction is comprised of a scalar term λ and a function f (λ, i) that depends
on λ and i. λ and f (λ, i) control the mode (point of highest probability mass) of the unimodal
distribution and the adjacent utilities are monotonically decreasing from the mode. The variance
of the distribution is λ. To ensure that λ is always greater than 0, we set λ to be a function of y∗n
(Equation 5) as follows:

λ = f (y∗n) = ln(1 + exp(y∗n)) (22)

This formulation for modelling ordered choice has several implications. First, the (log) Poisson
adjustment term to the systematic utility conforms to the general formulation Ui = βx+ f (Ain)+εi

described by Axhausen and Schüssler (2007). Axhausen and Schüssler suggest four behavioural
processes can be expected: loosing visibility, joint risks, super-alternative, or super-visibility.
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Since our adjustment term reduces the utilities of the non-chosen alternatives proportionally
further away from the chosen alternative, therefore giving the non-chosen alternatives a lower
probability of being selected. The Unimodal Logit model falls under the category of loosing

visibility.

Second, since the utilities do not include attributes of competing alternatives, the relative
probability of the decision maker choosing between two alternatives is independent of any new
alternatives. Therefore it retains the proportional odds ratio between competing choices. For
example, given a Likert scale from “strongly disagree” (1) to “strongly agree” (5), adding a 6th
choice – e.g. “very strongly agree” (6) to the choice set does not violate the IIA property.

Third, the Poisson function takes into account the “zero” option, for instance when a choice
set containing the number of items to buy which includes a “no purchase” alternative. In some
cases, a zero-truncated Poisson (ZTP) distribution might be more appropriate. For example, a
movie rating database has to have scores between 1 to 5 stars. A Zero-truncated Unimodal Logit
has the following ZTP pmf.

P(i|i > 0) =
λiexp(−λ)

i!(1 − exp(−λ))
, for i = 1, 2, 3, ... (23)

and the utility of the Zero-truncated Unimodal Logit is defined by:

Uin = Vin + i ln(λ) − λ − ln(i!) − ln(1 − exp(−λ)) + εin (24)

Finally, similar to the OGEV specification, the Unimodal Logit does not require a set of
thresholds, as it only deals with the correlation between the alternatives in the utility function.
To incorporate heterogeneity between outcomes, we can include alternative specific parameters
in Vin. This allows the observed utility to capture any taste heterogeneity, independent from the
proximity correction error component.

The probabilities of the Unimodal Logit have a closed-form expression and we use a maximum
likelihood function over the observations, maximizing the a posteriori probability, to estimate
the parameters of the model:

LL(β̂) =

N∑
n=1

J∑
i=1

zni ln P(yni | β,X) (25)
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zni is the ground truth information where zni = 1 if the decision maker chooses alternative i and
zni = 0 otherwise. β and X are the vectors of estimated parameters and exogenous variables
respectively.

4 Case study

This case study aims to understand the suitability of modelling ranked ordered choices using
the Unimodal Logit model. A crash severity analysis for identifying the contributing factors
towards the severity of injury or manner of collision is used to test our model hypothesis. Crash
severity is measured by the most severe injury sustained by all involved parties and the level
of severity is usually defined by the amount of property damage, and the number of injured or
fatalities (Mannering and Bhat, 2014).

We used a publicly available open dataset of the High Severity Traffic Crash Data Report1 from
the City of Tempe, Arizona (City of Tempe, 2018). The data contains 39,793 records, with
information on the collision, time, location, condition of the road, weather, lighting, age, gender,
type of violation and action taken by the driver. Data records were taken between 2012 and
2019.

Table 1 describes the variables Xn used in the estimation. Five accident severity levels j =

{1, 2, 3, 4, 5} are defined: 1: no injury, 2: possible injury, 3: non-incapacitating (minor) injury,
4: incapacitating (major) injury, and 5: fatal injury. The severity of the accident is given by
the highest severity of injury of all persons involved. Among the observations, 27,473 were
classified as "no injury", 7,251 were "possible injury", 4,411 were "minor injury", 559 were
"major injury" and 99 were "fatal injury". The attributes are classified into i) environmental
attributes and ii) collision related attributes. Environmental attributes refer to variables such
as road condition, weather, lighting, and time of day. Collision related attributes refer to the
variables associated with the accident instance: cause of accident and behaviour of driver, vehicle
type, alcohol level, victim’s age, total number of injured parties and location of incident (relative
to a road intersection).

In this study, we estimated three models: 1) Ordered Logit model, 2) Unimodal Logit model,
and 4) Zero-truncated Unimodal Logit model. In the Ordered Logit model, the latent propensity
function is specified as y∗n =

∑
m βmXmn + εn of the crash n, where βm is the parameter to be

estimated, εn is a stochastic error term and Xn is the crash attribute. the latent propensity function

1https://data.tempe.gov/datasets/tempegov::1-08-crash-data-report-detail/about
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Name Variable Summary statistics mean

Environmental
Time hour_afternoon Time of accident between 12pm to 6pm 0.471

hour_night Time of accident between 6pm to 12am 0.215
Lighting light_darklighted Lighting condition: dark, lighted 0.222

light_darknotlighted Lighting condition: dark, not lighted 0.007
Road cond. surf_wet Wet surface at site of accident 0.032
Weather meteo_cloudy Weather: Cloudy 0.054

meteo_rain Weather: Rain 0.023
Collision characteristics
Age age Defines the age of the driver 30.2
Total injuries total_injuries Total number of injured involved 0.441
Alcohol use alcohol Indicates whether alcohol was a factor 0.044
Location nonintersection Collision not near an intersection 0.429
Type type_cyclist Car-cyclist collision 0.022

type_pedestrian Car-pedestrian collision 0.007
type_driverless Car-driverless vehicle collision 0.001

Action action_turn Driving behaviour: Making a turn 0.306
action_lanes Driving behaviour: Changing lanes 0.077
action_straight Driving behaviour: Going straight ahead 0.493
action_slowing Driving behaviour: Slowing in traffic 0.029

Cause cause_speeding Violation: Speed to fast for conditions 0.312
cause_yield Violation: Failed To yield right of way 0.199
cause_unsafe Violation: Unsafe lane change 0.078
cause_signal Violation: Disregarded traffic signal 0.066
cause_following Violation: Followed too closely 0.066
cause_distraction Violation: Inattention distraction 0.039
cause_turn Violation: Made improper turn 0.042

Collision acc_rearend Collision type: Rear end 0.377
acc_left Collision type: Left turn 0.19
acc_side Collision type: Sideswipe 0.131

Table 1: Summary statistics of the Tempe High Severity Traffic Crash Data

is mapped to a logistic distribution defined by a set of fixed thresholds defined by τ1, τ2, τ3,
and τ4 where τ1 = 0, τ2 = τ1 + δ2, τ3 = τ2 + δ3, and τ4 = τ3 + δ4. We estimate the differences
δ2, δ3, and δ4 in the Ordered Logit model. In the Unimodal and Zero-truncated Unimodal
Logit model, the linear propensity function is limited to λn > 0 by using the transformation:
λn = ln(1 + exp(y∗n)), since the Poisson distribution requires a positive λ component.

We set the first alternative (no injury) as the reference choice. The estimated parameters are
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interpreted as the impact of the attribute on the severity of the outcome. However, caution must
be taken when interpreting the signs of the β estimates as it does not always determine the
direction of the impact (Wooldridge, 2002).

5 Results

5.1 Model evaluation

Two goodness-of-fit measures are chosen for model evaluation: pseudo R-squared measure (ρ2)
(McFadden, 1974) and Bayesian Information Criterion (BIC). The former tests how well the
model fits the data and the latter tests the efficiency of the model by considering the number of
parameters used (complexity). The pseudo R-squared measure is given by:

ρ2 = 1 −
ln LL(β̂)
ln LL(β̄)

(26)

where LL(β̂) denotes the maximized likelihood of the estimated model, and β̄ denotes the null
model (β parameters associated with the exogenous variables are zero). ρ2 is bounded by 0 and
1 and a ρ2 measure closer to 1 indicates a better model fit. The BIC of a model is equal to:

BIC = −2LL(β) + M ln(Q) (27)

where M is the number of estimated parameters and Q is the number of observations. The model
with the lower BIC is generally the preferred model.

5.2 Out-of-sample evaluation

In order to evaluate model performance on out-of-sample forecasting, we use three quantitative
metric: Discrete Classification Accuracy, Geometric Mean Probability of Correct Assignment
(GMPCA) and Quadratic Weighted Kappa (QWK).

The Discrete Classification Accuracy shows the number of correct assignments if each prediction
is assigned to the highest probability class. It is the most commonly used metric in the literature,
however, this metric have several problems. The most important one is that if the data is
imbalance, i.e. there are more observations of some classes than others (such as in this case
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study), by assigning each prediction to the class with highest probability, the less frequent classes
will be under-represented in the predicted outcomes, whereas the more frequent ones will be
over-represented. Therefore, a model that always predicts the majority classes might achieve a
high accuracy score.

The Geometric Mean Probability of Correct Assignment (GMPCA) (Hillel, 2019) provides
a robust measure of the model’s average accuracy, taking into account relative variances in
decision probabilities. The advantage of this metric is that it has a clear physical interpretation,
the geometric average correctness of the output model. A GMPCA of one indicates a perfect
(totally correct) classifier, while a GMPCA of zero indicates a completely erroneous classifier. It
can be calculated as:

GGMPCA =

 N∏
n=1

P (in | xn)


1
N

(28)

The Quadratic Weighted Kappa (QWK) (−1 ≤ κ ≥ 1) evaluates whether a model does better than
random chance (κ > 0) or worse than random chance (κ < 0), where a score of 1 denotes the best
score (Cohen, 1968). The weighting allows the evaluation against random chance to be scaled
by how far the it is from the predicted choice. The result is a chance-corrected proportion of
weighted agreement which is appropriate for ordinal choice problems. The Quadratic Weighted
Kappa can be defined as:

κ = 1 −

∑J
i=1

∑J
j=1 wi jŷi j∑J

i=1
∑J

j=1 wi jyi j
(29)

where i and j represents the observed and predicted choice indices respectively, wi j ∈ R≥0 and
wii = 0. ŷi j is the proportion of observed agreement from the forecast and yi j is the proportion of
agreement by chance.

5.3 Model results

The models were estimated using Biogeme software (Bierlaire, 2020). Table 2 presents the
estimates results of each of the three models, the robust standard error and the t-test score
for each parameter respectively. As aforementioned, the Unimodal Logit model specification
examines the effects of the interaction between the attributes and the crash severity. Given that
the crash severity follows a unimodal distribution, we expect that the Unimodal specification
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would capture a better model fit and more accurate estimates of the attribute coefficients. All
three models present significant estimates for most of the coefficients, the alternative specific
constants (Unimodal Ordered) and the threshold values.

The zero-truncated version of the Unimodal Logit model performs poorly compared to the
Unimodal Logit, but still slightly better than the Ordered Logit model. This might indicate that
that the crash severity may not follow a ZTP distribution.

In particular, the Ordered Logit and the Unimodal Logit model exhibit similar signs for all
estimates except for cause_distraction, which is also shown to be significant in the latter
but not in the former. The cause_speeding parameter is shown to be not significant (-1.96 <

rob_tTest < 0) in the Ordered Logit, whereas it is a significant factor in the Unimodal Logit
(rob_tTest<-1.96). A study by Christoforou et al. (2011) predicted the type of accidents from real-
time data using prevailing traffic conditions. Their findings showed that driving at inappropriate

speeds does not always allow for evasive actions to be taken in order to avoid an accident,
thus influencing the severity of the crash. Similarly, we observed that the Unimodal Logit
captures this phenomena better than the Ordered Logit model. Another interesting finding is that
type_driverless parameter is significant in the Unimodal Logit, but not in the Ordered Logit
model. This might indicate a positive relationship between driverless vehicles and reduction in
collision severity.

We used a 20% out of sample data to evaluate model performance. Table 3 shows the comparison
between the three models on the evaluation metrics. Figure 2 illustrates the choice probabilities
generated by the Ordered and Unimodal Logit models. With discrete classification accuracy, the
models are not significantly different, in addition, the Ordered Logit (0.839) performs better than
the zero-truncated Unimodal Logit model (0.826). However, this accuracy is not reliable as it
only considered the “highest proability” output. As mentioned in Train (2003), such metric does
not give a reliable measure of predictive power. Comparing the models on GMPCA and QWK,
we see that the Unimodal Logit (0.653, 0.805) provides greater improvement from the Ordered
Logit (0.581, 0.758) and the Zero-truncated Unimodal Logit (0.59, 0.787). The Zero-truncated
Unimodal Logit performs similarly to the Ordered Logit. From our case study, our results show
that the Unimodal approach is more reliable method of modelling ordinal data.
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Ordered Logit Unimodal Logit Zero-trunc Unimodal Logit
Variables values rob_stdErr rob_tTest values rob_stdErr rob_tTest values rob_stdErr rob_tTest

ASC_noinjury (1) ref. ref.
ASC_possinjury (2) 3.673 0.039 93.809 2.452 0.036 68.248
ASC_nonincap (3) 4.117 0.039 104.798 3.446 0.035 97.33
ASC_incap (4) 2.449 0.056 43.533 1.907 0.054 35.544
ASC_fatal (5) 0.788 0.109 7.193 0.319 0.111 2.889
acc_leftturn -0.276 0.048 -5.784 -0.318 0.038 -8.269 -0.383 0.052 -7.369
acc_rearend -0.785 0.049 -15.929 -0.851 0.039 -21.986 -1.13 0.056 -20.1
acc_sides -1.294 0.063 -20.629 -1.209 0.041 -29.721 -1.745 0.067 -25.958
action_lanes -0.618 0.102 -6.082 -0.926 0.073 -12.645 -1.39 0.108 -12.868
action_slowing -0.915 0.102 -9.004 -1.18 0.08 -14.726 -1.829 0.113 -16.181
action_straight -0.83 0.048 -17.341 -1.265 0.034 -37.643 -1.897 0.054 -35.375
action_turn -1.041 0.055 -18.912 -1.48 0.037 -39.706 -2.176 0.059 -36.981
age -0.008 0.001 -10.184 -0.015 0.001 -22.834 -0.017 0.001 -18.351
alcohol 0.384 0.076 5.02 0.379 0.082 4.625 0.524 0.107 4.918
cause_distraction 0.08 0.079 1.013 -0.287 0.06 -4.749 -0.249 0.088 -2.83
cause_following -0.185 0.07 -2.647 -0.39 0.054 -7.237 -0.455 0.079 -5.79
cause_signal -0.412 0.07 -5.869 -0.799 0.062 -12.943 -0.948 0.08 -11.885
cause_speeding -0.027 0.049 -0.543 -0.271 0.04 -6.78 -0.28 0.058 -4.824
cause_turn -0.153 0.084 -1.832 -0.355 0.059 -6.05 -0.411 0.089 -4.611
cause_unsafe -0.492 0.102 -4.811 -0.473 0.068 -6.985 -0.686 0.103 -6.676
cause_yield -0.108 0.053 -2.038 -0.341 0.042 -8.166 -0.4 0.059 -6.784

Continued on next page
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Ordered Logit Unimodal Logit Zero-trunc Unimodal Logit
Variables values rob_stdErr rob_tTest values rob_stdErr rob_tTest values rob_stdErr rob_tTest

hour_afternoon -0.363 0.031 -11.677 -0.703 0.027 -26.343 -0.753 0.035 -21.437
hour_night -0.333 0.047 -7.082 -0.428 0.041 -10.338 -0.485 0.056 -8.678
light_darklighted -0.347 0.048 -7.31 -0.638 0.04 -15.883 -0.709 0.056 -12.713
light_darknotlighted -0.663 0.194 -3.427 -0.906 0.155 -5.856 -1.13 0.243 -4.654
meteo_cloudy -0.172 0.069 -2.485 -0.177 0.068 -2.616 -0.211 0.091 -2.331
meteo_rain -0.054 0.152 -0.356 -0.167 0.133 -1.253 -0.124 0.19 -0.655
nonintersection -0.316 0.03 -10.653 -0.67 0.026 -25.694 -0.691 0.034 -20.073
surf_wet -0.183 0.134 -1.364 -0.199 0.119 -1.671 -0.305 0.169 -1.808
total_injuries 2.659 0.042 62.862 3.551 0.051 69.493 3.789 0.065 58.207
type_cyclist 1.46 0.082 17.722 0.619 0.117 5.289 0.804 0.128 6.265
type_driverless -0.52 0.355 -1.465 -1.478 0.194 -7.631 -1.744 0.331 -5.267
type_pedestrian 1.596 0.208 7.657 3.838 0.473 8.122 3.066 0.506 6.065
tau1 0.0 0.053 0.0
delta2 2.611 0.038 68.111
delta3 3.31 0.084 39.596
delta4 2.303 0.154 14.98

Log likelihood -17148.44 -13471.31 -16731.04
BIC 34628.6 27274.4 33793.8
ρ2 0.665 0.737 0.673
Optimization time 0:01:02.27 0:06:26.2 0:07:40.4

Table 2: Crash severity analysis: model estimates
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Model Discrete Classification Acc. GMPCA QWK

Ordered Logit 0.839 0.581 0.758
Unimodal Logit 0.842 0.653 0.805
Zero-truncated Unimodal Logit 0.826 0.59 0.787

Table 3: 20% out-of-sample predictive evaluation

6 Conclusion

The current study proposes a new form of choice model for ordered choices. This new choice
model, called the Unimodal Logit model, uses a Poisson distribution function to account for
choice proximity in the error correction term in the utility. This idea is based on the fact that
ordered choices exhibits unimodality, specifically, it is the a posteriori distribution which is
unimodal. Imposing this constraint in our model allows for a Logit model to correct for this
underlying correlation between neighbouring choices, which retaining all the traits of a Ordered
choice model, including the interpretation of the β parameters.

The results show several key differences on a crash severity analysis and the Unimodal Logit
model was shown to capture the influence of driving speed, distracted driving and driverless
vehicles in the model. The Unimodal Logit model also exhibits better model fit when comparing
BIC and ρ2 measures. This study provides new evidence on using a unimodal modelling
approach on ordered choices. In terms of predictive performance the Unimodal Logit model
shows improvement over the Ordered Logit when accounting for choice proximity. So far, we
have looked at Poisson distribution, but we would be investigating other forms of unimodal
distribution that have a closed form, such as a negative binomial distribution in future studies.
Furthermore, the Unimodal approach could also be combined with other error correction logit
models such as Path Size Logit (Sobhani et al., 2019), or Residual Logit (Wong and Farooq,

2021), which could be an interesting avenue for research.

7 Supplementary code and data

Biogeme code and data used in analysis and modelling are available on: https://github.

com/mwong009/unimodal-logit
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Appendix A: Out-of-sample results

Figure 2: Choice probability output generation on 20% out-of-sample data. 24 random samples
shown. Top: Ordered Logit, bottom: Unimodal Logit. Red bar indicates actual choice.
Highest bar indicates selected choice.
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