
A Spatial Branch and Bound Algorithm for
Continuous Pricing with Advanced Discrete Choice
Demand Modeling

Tom Haering

Michel Bierlaire

STRC conference paper 2023 April 13, 2023

Monte Verità / Ascona, May 10-12, 2023
23rd Swiss Transport Research ConferenceSTRC

A Spatial Branch and Bound Algorithm for
Continuous Pricing with Advanced Discrete Choice Demand
Modeling

Tom Haering
TRANSP-OR
ETH Lausanne
tom.haering@epfl.ch

Michel Bierlaire
TRANSP-OR
ETH Lausanne
michel.bierlaire@epfl.ch

April 13, 2023

Abstract

In this paper, we present a spatial branch and bound algorithm to tackle the continuous
pricing problem, where demand is captured by an advanced discrete choice model (DCM).
Advanced DCMs, like mixed logit or latent class models, are capable of modeling demand
on the level of individuals very accurately due to a focus on behavioral realism. The
downside of such realistic models is that it is highly nontrivial to include the resulting
demand probabilities into an optimization problem, as they usually do not have a convex
or even closed-form expression. To this end, a simulation procedure is applied to get a
formulation as a mixed integer linear program (MILP). However, due to its size, this
MILP is very hard to solve. We first propose to solve the problem as a non-convex
quadratically constrained quadratic program (QCQP) instead, where total unimodularity
guarantees the integrality of the solution. Isolating all non-convexity into a set of bilinear
constraints leads to a formulation as a non-convex quadratically constrained linear program
(QCLP) that proves computationally beneficial. Lastly, we present a spatial branch and
bound algorithm that employs the McCormick envelope to obtain relaxations and makes
use of total unimodularity to generate feasible solutions and thus lower bounds for the
maximization fast. We compare the proposed method to the general purpose solver
GUROBI, on a parking choice case study from Ibeas et al. (2014). The results show that
the custom spatial branch and bound approach outspeeds GUROBI by a factor of at least
35x for the MILP formulation and at least 2.5x for the QCLP in single-price optimization,
and a factor of at least 4.5x for the QCQP and 1.3x for the QCLP when optimizing
multiple prices simultaneously. The ratio of the speedup further increases with the size of
the instance.

Keywords
branch and bound, discrete choice, mixed multinomial logit, optimization, pricing,
simulation

Contents

List of Tables . 1

List of Formulations . 1

1 Introduction . 2

2 Methodology . 3
2.1 MILP formulation . 3
2.2 Continuous reformulation . 4
2.3 Spatial Branch and Bound algorithm . 5

3 Results and discussion . 7

4 Conclusions . 9

5 References . 11

List of Tables

1 Utility parameters derived from Ibeas et al. (2014) 8
2 Solve time (seconds) for optimizing PUP price only 9
3 Objective value and optimal solution for optimizing PUP price only 10
4 Solve time (seconds) for optimizing PSP and PUP prices together 10
5 Objective value and optimal solution for optimizing PSP and PUP prices together 11

List of Formulations

1 CPP as a MILP . 3
2 CPP as a QCQP . 4
3 CPP as a QCLP . 5
4 Linear relaxation of the CPP using the McCormick envelope 6

1 Introduction

Pricing optimization is essential when pricing decisions need to be made for one or multiple
products, particularly when there are cross-effects between their demands (Talluri and
Van Ryzin, 2004). This problem can arise in various areas, including revenue management
for airlines, railways, and hotels, assortment pricing in retail, or product line pricing
in consumer goods industries. While previous research has utilized the price-dependent
multinomial logit (MNL) model to optimize prices for firms offering multiple products
(Dong et al., 2009; Song et al., 2021), advanced discrete choice models such as mixed logit
or latent class models have not been commonly used.
DCMs can capture the heterogeneity of customer preferences and the complex interac-
tions between product attributes, which are often lost when the demand is aggregated.
Furthermore, individual-level data can be used to identify profitable customer segments
and to develop targeted pricing strategies. However, modeling demand at an individual
level requires more data and computational resources compared to modeling the demand
on an aggregate level.
In product assortment (PA) optimization, where a seller must make discrete decisions
about the selection of products and their prices, the mixed multinomial logit (MMNL)
has become increasingly popular (see e.g. Feldman et al., 2022). MMNL is regarded as a
potent tool that captures the cross-effects in demand and can approximate any random
utility choice model arbitrarily closely (Train, 2009). Since the PA problem under the
MMNL choice model (or any other advanced choice model that leads to non-convex
probability formulas) is NP-hard (Li et al., 2015; Désir et al., 2015), much work has been
focused on deriving upper bounds and efficient approximations, with the recent exception
of Sen et al. (2017) who propose an exact conic MIP approach. Despite its theoretical and
practical relevance, the MMNL model and its incorporation into revenue maximization
have received little attention in the dynamic pricing literature (e.g. Keskin, 2014), with
researchers often sacrificing behavioral realism for tractable (concave) formulations and
therefore considering MNL (Dong et al., 2009; Keller et al., 2014) or nested logit Li and
Huh (2011) instead.
A general implementation approach for integrating any advanced choice model into an
optimization problem has been proposed in Paneque et al. (2021), where Monte Carlo
simulation is used to generate a deterministic problem at the cost of an increase in
complexity since the resulting mixed integer linear problem (MILP) involves finding the
best price over a large number of scenarios, generated by taking draws from the stochastic
components of the formulation. With a sufficiently large number of draws, the MILP
formulation guarantees convergence to globally optimal solutions. However, since the
complexity of the MILP scales exponentially with the number of draws, the approach can

currently only be applied to solving small-scale instances, i.e., with few individuals and
alternatives.

In this work, we extend the MILP approach in Paneque et al. (2021) by first restating
it as a non-convex quadratically constrained quadratic program (QCQP), and then as
a non-convex quadratically constrained linear program (QCLP), for which we develop a
spatial branch and bound algorithm that efficiently solves the problem for large numbers
of draws. We compare the MILP, the QCQP, and QCLP formulations (all solved using the
mathematical solver GUROBI) to our spatial branch and bound approach by application
to a parking choice case study by Ibeas et al. (2014).

2 Methodology

We first present the original MILP formulation of the CPP that results when applying
the approach of Paneque et al. (2021) directly:

2.1 MILP formulation

Formulation 1 – CPP as a MILP

max
p,ω,U,H

1

R

∑
r

∑
n

∑
i

piωinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ω ∈ {0, 1}

p, U,H ∈ R

Consider a set of n = {1, . . . , N} in-
dividuals choosing exactly one alter-
native among a set of i = {1, . . . , I}
alternatives. Assume that in every sce-
nario r, each individual n selects the
alternative i corresponding to the max-
imal utility Uinr. The utility function
depends on K parameters βk which
are exogenous and estimated using an
advanced discrete choice model where
all prices were fixed. These parameters
are multiplied by individual or alter-
native specific attributes xink, which
are also exogenous, just like the added
error term draws εinr. For the CPP

the price pi of alternative i becomes a decision variable that is to be optimized in order to
maximize profit. Note that the only assumption we make on the utilities is that they are
linear in the price variables. Denote by ωinr the binary decision variable that indicates
whether individual n chooses alternative i in scenario r. The choice probabilities are
then approximated by Pn(i) ≈ 1

R

∑
r ωinr and are guaranteed to converge to the real

probabilities with a sufficiently large number of scenarios R, see Paneque et al. (2021).
The objective function is equal to the profit and is thus defined as the average number of
times that individual n chooses alternative i over all scenarios r (i.e. its choice probability)
multiplied by the alternative’s price pi. The constraints define the individual choices:
Constraints (µnr) guarantee that only one alternative can be chosen per individual and
scenario. Constraints (κinr) model the utility Uinr of each alternative i for individual
n in scenario r. Constraints (ζnr) and constraints (αinr) ensure that the choice being
made corresponds to the one with the highest utility. Note that both the objective and
the constraints ζnr contain the product piωinr, which can be linearized using a big-M
approach.

2.2 Continuous reformulation

Formulation 2 – CPP as a QCQP

max
p,ω,U,H

1

R

∑
r

∑
n

∑
i

piωinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ω ∈ [0, 1]

p, U,H ∈ R

Our first reformulation (Formulation
2) defines the CPP as a non-convex
quadratically constrained quadratic
problem (QCQP), with a quadratic
objective and quadratic equality con-
straints, making them non-convex.
The formulation is equivalent to the
MILP in Formulation 1, except that
the variables ωinr are no longer con-
strained to be binary and instead are
relaxed to be in the interval [0, 1]. In-
tegrality still holds, since for any price
pi the problem of choosing the alterna-
tive with the highest utility is a knap-
sack problem, which is totally unimod-
ular.

Formulation 3 – CPP as a QCLP

max
p,ω,η,U,H

1

R

∑
r

∑
n

∑
i

ηinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

(
∑
k ̸=p

βkxink + εinr)ωinr + βpηinr

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr

ηinr = piωinr (λinr)

ω ∈ [0, 1]

p, η, U,H ∈ R

Our second reformulation (Formu-
lation 3) isolates all non-convexity
into a set of bilinear constraints λinr

which define the product piωinr, turn-
ing the problem into a non-convex
quadratically constrained linear pro-
gram (QCLP).

2.3 Spatial Branch
and Bound algorithm

We start from the QCLP formulation
of the CPP shown in Formulation 3.
We then construct a linear relaxation

(Formulation 4) by replacing the bilinear constraints λinr by a set of inequalities (λ1
inr to

λ4
inr) that define the McCormick envelope, see McCormick (1976). This relaxation is a

commonly used device to tackle problems with bilinear constraints. For the McCormick
envelope, we need to provide bounds for both variables in the product piωinr. For ωinr

this is straight-forward, as we can simply set the lower and upper bound to 0 and 1
respectively, whereas for the prices pi we have to assume that its possible to define a
reasonable range for each price, pi ∈ [pL

i , p
U
i], which is usually the case in practice. To

go from solving a relaxation to an approximation of the optimal solution of the original
problem, we employ a so-called spatial branch and bound algorithm: We start by solving
the relaxation with the initial bounds p ∈ [pL, pU]. If it is infeasible, the original problem
is also infeasible and we are done. If it is feasible and the optimal solution found is also
feasible for the original problem, we are done as well. There are multiple ways to define
feasibility for the original problem, one way would be to check if all ω are close enough
to integer values, another is to check how strongly the relaxed bilinear constraints are
violated. If we find an optimal solution for the relaxation that is infeasible for the original,
we store the objective value of that solution as an upper bound for the objective value
of all subpolyhedra and we start the branching: This means that instead of looking at
the entire space p ∈ [pL, pU], we choose an alternative i and split the domain [pLi , p

U
i] of pi

into two smaller intervals [pLi ,
pLi +pUi

2
] and [

pLi +pUi
2

, pUi]. Using these two new sets of bounds,
we create two new (sub)polyhedra where we solve the relaxation again and iterate the
procedure. After a branching, we always proceed on the branch which has the highest
upper bound on its objective value (this is also called a best-first-search). Furthermore,

after solving each relaxation, we can use the optimal value of the pi variable that we get
from the relaxation to compute an integer solution to the original problem. This can be
done very efficiently as for fixed prices, all individuals and scenarios become completely
independent, and finding the optimal values of the ω variables reduces to assigning 1 to
the alternative with the highest utility and 0 to all others.

Formulation 4 – Linear relaxation of the
CPP using the McCormick envelope

max
p,ω,η,U,H

1

R

∑
r

∑
n

∑
i

ηinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

(
∑
k ̸=p

βkxink + εinr)ωinr + βpηinr

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr

(κinr)

ηinr ≥ pLi ωinr (λ1
inr)

ηinr ≥ pUi ωinr + pi − pi
U (λ2

inr)

ηinr ≤ pLi ωinr + pi − pi
L (λ3

inr)

ηinr ≤ pUi ωinr (λ4
inr)

ω ∈ [0, 1]

p, η, U,H ∈ R

This integer solution is feasible for
the original problem and thus pro-
vides us with a global lower bound
for the branching tree, meaning we
can delete all branches whose up-
per bound is less or equal to the
best (highest) known lower bound.
If we ever find a solution during the
branching which is also feasible for
the original, we can use it as a lower
bound as well. This process contin-
ues until the highest upper bound
umax from all active branches is at
most a certain tolerance percentage
perctol away from the best lower
bound lmax, i.e.:
tes..ss lmax−umax

lmax
· 100 ≤ perctol.

If we deal with more than one price
that we want to optimize, an im-
portant decision we have to make at
each branching is which alternative’s
price to branch on. The traditional

approach of spatial branch and bound is to always select the alternative i where the
interval [pLi , pUi] is the largest (longest-edge-branching). This is comparable to a strategic
exhaustive search. In our case we utilize a custom branching rule where we branch along
the asset which displays the largest maximum violation of the constraints ηinr = piωinr.
Algorithm 1 provides the pseudo-code for the described procedure. It is worth noting
that this branch and bound algorithm will always terminate with a 0% gap in a finite
number of steps since we do not actually need to find the exact optimal price, but rather
the bounds for the price such that the optimal choices are generated. It then follows that,
within those sufficiently optimal bounds, the obtained price will be optimal as well.

Algorithm 1: A spatial Branch & Bound algorithm to solve the CCP
Result: perctol-optimal solution (p∗, ω∗, η∗) for Formulation 3.
Initialization: Set j := 0, ∆j := [pL1 , p

U
1]× · · · × [pLJ , p

U
J], o∗ := −∞, ôj := ∞,

Ω := {{∆j, ôj}}
while o∗−maxj{ôj}

o∗
· 100 ≤ perctol and Ω ̸= ∅ do

let j := argmax{ôj|{∆j, ôj} ∈ Ω}. Remove {∆j, ôj} from Ω and solve
Formulation 4 with bounds ∆j.

if Formulation 4 is feasible then
denote its optimal solution by (pj, ωj, ηj) and its optimal objective value by oj

as well as its integer optimal value ōj.
if ōj > o∗ then

compute ω̄j, η̄j from pj and set o∗ = oj, (p∗, ω∗, η∗) := (pj, ω̄j, η̄j), delete
from Ω all instances {∆j, ôj} where ôj ≤ o∗.

end
if oj > o∗ then

if (pj, ωj, ηj) is feasible for Formulation 3 then
o∗ = oj, (p∗, ω∗, η∗) := (pj, ωj, ηj), delete from Ω all instances {∆j, ôj}
where ôj ≤ o∗.

else
let i = argmax{maxnr |ηinr − piωinr| | i ∈ J} and divide the interval
[pLi , p

U
i] into two new intervals [pLi ,

pLi +pUi
2

] and [
pLi +pUi

2
, pUi]. Construct

the two new subpolyhedra ∆
′ and ∆

′′ . Define ô
′
= ô

′′
:= oj and

augment Ω = Ω ∪ {∆′
, ô

′} ∪ {∆′′
, ô

′′}.
end

end

end

end

3 Results and discussion

To test the presented methodology we rely on a case study of a parking services operator,
which is motivated by a published disaggregate demand model for parking choice by Ibeas
et al. (2014). The choice set consists of three services: paid on-street parking (PSP), paid
parking in an underground car park (PUP), and free on-street parking (FSP). Since the
latter does not provide any revenue to the operator, it represents the opt-out option. We
assume that all customers must pay the same price for the same service. The explanatory

variables considered in the discrete choice model estimated by Ibeas et al. (2014) include
the following socioeconomic characteristics: trip origin (if outside town, it affects the
utility of free street parking), age of the vehicle (if less than three years old, it affects the
utility of paid underground parking), the income of the driver (if low, it affects the utility
of paid alternatives), area of residency of the driver (if in town, it affects the utility of
paid alternatives). Additionally, the following attributes of the alternatives are considered:
access time to destination, access time to parking and parking fee. For the latter two
continuous variables, the corresponding coefficients are normally distributed in the utility
function, making the choice model a mixed multinomial logit (MMNL). Table 1 illustrates
the parameters of the discrete choice model.

Table 1 – Utility parameters derived from Ibeas et al. (2014)

Parameter Value
ASCFSP 0.0
ASCPSP 32.0
ASCPUP 34.0
Fee (€) ∼ N(−32.328, 14.168)
Fee PSP - low income (€) -10.995
Fee PUP - low income (€) -13.729
Fee PSP - resident (€) -11.440
Fee PUP - resident (€) -10.668
Access time to parking (min) ∼ N(−0.788, 1.06)
Access time to destination (min) -0.612
Age of vehicle (1/0) 4.037
Origin (1/0) -5.762

We run two series of tests: in the first, we fix the price of PSP to be 0.6€ and only
optimize the price of PUP. This reduces the complexity enough to make meaningful
comparisons to the computationally heavy MILP model. We consider a random subset
of 100 customers and stepwise increase the number of random draws from 100 to 1000.
For the second series of tests, we optimize both the price of PSP and PUP, but we only
consider a set of 50 customers, with the same range of random draws. For both prices
we set the search bounds to be [0, 2]. All experiments are performed using GUROBI
10.0.0 (Gurobi Optimization, LLC, 2021) on a 2.6 GHz 6-Core Intel Core i7 processor
with 16 GB of RAM, on a single thread and with a two-hour time limit per instance.
Tables 2 and 3 show the solve time with achieved optimality gap and the objective values
with computed prices respectively for optimizing only the price of the PUP alternative,
whereas Tables 4 and 5 depict the same outputs when optimizing PSP and PUP prices

Table 2 – Solve time (seconds) for optimizing PUP price only

MILP QCQP QCLP B&B
N R Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

100 100 3360 0 291 0 182 0 95 0
100 200 7200 22.89 1256 0 794 0 398 0
100 300 7200 134.28 3307 0 2584 0 976 0
100 400 7200 128.56 6522 0 4275 0 1593 0
100 500 7200 141.54 7200 0.74 7093 0 2661 0
100 600 7200 118.14 7200 26.19 7200 0.57 3620 0
100 700 7200 128.45 7200 36.83 7200 0.75 5283 0
100 800 7200 113.12 7200 - 7200 5.27 7200 0.37
100 900 7200 142.49 7200 - 7200 - 7200 1.94
100 1000 7200 149.03 7200 - 7200 - 7200 10.89

together. It is evident that computing the prices of two competing alternatives that
influence each other’s demands simultaneously is much more computationally challenging
than optimizing a single price only. For optimizing only the PUP price, our algorithm
outspeeds the MILP by a factor of at least 35x, the QCQP by at least 4x, and the QCLP
by at least 2.5x, with the ratio increasing with the number of draws. When optimizing
both the PSP and PUP prices, the MILP solver never terminates but for the QCQP we
note a speedup of at least 4.5x and for the QCLP of at least 1.3x. Again, increasing the
number of draws also increases the ratio of the speedup. For more than 600 draws, the
QCLP solver is not able to generate any feasible solutions in the two-hour time window,
whereas our spatial branch and bound approach finds feasible solutions with an objective
value up to 2.5x higher than the one found by the MILP or the QCQP.

4 Conclusions

We propose a spatial branch and bound algorithm to tackle the continuous pricing problem,
where demand is captured by an advanced discrete choice model (DCM). The stochasticity
in the demand is dealt with using simulation, which leads to a large MILP formulation that
is difficult to solve. We show that already reformulating the MILP as a non-convex QCQP
improves computational speed significantly, even more so when formulated as a non-convex
QCLP. The spatial branch and bound procedure solves the problem significantly faster
GUROBI on the tested instances, outspeeding the MILP by a factor of at least 35x and

Table 3 – Objective value and optimal solution for optimizing PUP price only

MILP QCQP QCLP B&B
N R Obj. Price Obj. Price Obj. Price Obj. Price

100 100 54.13 [0.6, 0.66] 54.13 [0.6, 0.66] 54.13 [0.6, 0.66] 54.13 [0.6, 0.66]
100 200 54.54 [0.6, 0.65] 54.6 [0.6, 0.66] 54.6 [0.6, 0.66] 54.6 [0.6, 0.66]
100 300 54.38 [0.6, 0.64] 54.48 [0.6, 0.67] 54.48 [0.6, 0.67] 54.48 [0.6, 0.67]
100 400 54.15 [0.6, 0.63] 54.39 [0.6, 0.66] 54.39 [0.6, 0.66] 54.39 [0.6, 0.67]
100 500 54.27 [0.6, 0.66] 54.23 [0.6, 0.65] 54.29 [0.6, 0.67] 54.29 [0.6, 0.67]
100 600 54.15 [0.6, 0.64] 49.13 [0.6, 0.97] 54.25 [0.6, 0.65] 54.29 [0.6, 0.67]
100 700 54.14 [0.6, 0.63] 49.18 [0.6, 0.97] 54.37 [0.6, 0.65] 54.39 [0.6, 0.66]
100 800 54.32 [0.6, 0.66] - - 53.82 [0.6, 0.61] 54.32 [0.6, 0.65]
100 900 54.43 [0.6, 0.67] - - - - 54.44 [0.6, 0.67]
100 1000 54.42 [0.6, 0.66] - - - - 54.35 [0.6, 0.68]

Table 4 – Solve time (seconds) for optimizing PSP and PUP prices together

MILP QCQP QCLP B&B
N R Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)
50 100 7200 33.76 4283 0 1231 0 918 0
50 200 7200 70.03 6719 0 5187 0 3495 0
50 300 7200 125.65 7200 1.03 7200 1.53 7200 0.28
50 400 7200 186.21 7200 9.55 7200 20.7 7200 2.88
50 500 7200 272.78 7200 33.07 7200 40.88 7200 7.7
50 600 7200 379.53 7200 42.8 7200 41.99 7200 10.59
50 700 7200 440.25 7200 260.91 7200 - 7200 16.82
50 800 7200 495.39 7200 260.28 7200 - 7200 22.91
50 900 7200 493.85 7200 260.97 7200 - 7200 25
50 1000 7200 - 7200 260.67 7200 - 7200 29.16

the QCLP by at least 2.5x for single price optimization, and outspeeding the QCQP
by a factor of at least 4.5x and the QCLP by at least 1.3x for optimizing two prices
simultaneously. Increasing the size of the instance also increases the ratio of the speedup.
The methodology could be substantially advanced in future research by making use of the
separability of each relaxed subproblem, since the price is the only complicating variable
preventing the problem from being solved for each individual and scenario separately.
Thus a Benders decomposition would be a suitable candidate for further improvement of
the method. The authors would also like to perform a series of comparisons using only
open-source software like for example SCIP and COUENNE, as not every business might
be capable of purchasing a license for GUROBI. Last but not least, the code has not yet
been optimized in terms of language or data structure usage, which could both have a
strong impact on the performance.

Table 5 – Objective value and optimal solution for optimizing PSP and PUP
prices together

MILP QCQP QCLP B&B
N R Obj. Price Obj. Price Obj. Price Obj. Price
50 100 27.37 [0.58, 0.72] 27.55 [0.61, 0.7] 27.55 [0.61, 0.7] 27.55 [0.61, 0.7]
50 200 23.92 [0.66, 0.95] 27 [0.55, 0.68] 27 [0.55, 0.68] 26.99 [0.55, 0.68]
50 300 16.76 [1.02, 1.1] 27.12 [0.56, 0.67] 27.09 [0.56, 0.68] 27.12 [0.56, 0.67]
50 400 15.83 [1.01, 1.17] 27.07 [0.59, 0.69] 26.29 [1.09, 0.67] 27.15 [0.56, 0.66]
50 500 12.18 [1.3, 1.34] 26.4 [0.59, 0.8] 26.42 [0.59, 0.8] 27.13 [0.57, 0.68]
50 600 9.45 [1.32, 1.66] 26.36 [0.59, 0.8] 26.37 [0.59, 0.8] 27.23 [0.56, 0.69]
50 700 8.43 [1.33, 1.85] 11.73 [1.2, 1.39] - - 26.87 [0.62, 0.69]
50 800 7.65 [1.76, 1.76] 11.74 [1.2, 1.39] - - 26.37 [0.75, 0.62]
50 900 7.63 [1.74, 1.76] 11.7 [1.2, 1.39] - - 26.36 [0.75, 0.62]
50 1000 - - 11.73 [1.2, 1.39] - - 26.35 [0.75, 0.62]

5 References

Désir, A., V. Goyal, D. Segev and C. Ye (2015) Capacity constrained assortment optimization
under the markov chain based choice model, Available at SSRN 2626484.

Dong, L., P. Kouvelis and Z. Tian (2009) Dynamic pricing and inventory control of substitute
products, Manufacturing & Service Operations Management, 11 (2) 317–339.

Feldman, J., L. Wagner, H. Topaloglu and Y. Bai (2022) Assortment optimization under the
multinomial logit model with utility-based rank cutoffs, Available at SSRN.

Gurobi Optimization, LLC (2021) Gurobi Optimizer Reference Manual, https://www.gurobi.
com.

Ibeas, A., L. Dell’Olio, M. Bordagaray and J. d. D. Ortúzar (2014) Modelling parking choices
considering user heterogeneity, Transportation Research Part A: Policy and Practice, 70, 41–49.

Keller, P. W., R. Levi and G. Perakis (2014) Efficient formulations for pricing under attraction
demand models, Mathematical Programming, 145, 223–261.

Keskin, N. B. (2014) Optimal dynamic pricing with demand model uncertainty: A squared-
coefficient-of-variation rule for learning and earning, Available at SSRN 2487364.

Li, G., P. Rusmevichientong and H. Topaloglu (2015) The d-level nested logit model: Assortment
and price optimization problems, Operations Research, 63 (2) 325–342.

Li, H. and W. T. Huh (2011) Pricing multiple products with the multinomial logit and nested

https://www.gurobi.com
https://www.gurobi.com

logit models: Concavity and implications, Manufacturing & Service Operations Management,
13 (4) 549–563.

McCormick, G. P. (1976) Computability of global solutions to factorable nonconvex programs:
Part i—convex underestimating problems, Mathematical programming, 10 (1) 147–175.

Paneque, M. P., M. Bierlaire, B. Gendron and S. S. Azadeh (2021) Integrating advanced
discrete choice models in mixed integer linear optimization, Transportation Research Part B:
Methodological, 146, 26–49.

Sen, A., A. Atamturk and P. Kaminsky (2017) A conic integer programming approach to
constrained assortment optimization under the mixed multinomial logit model, arXiv preprint
arXiv:1705.09040.

Song, J.-S. J., Z. X. Song and X. Shen (2021) Demand management and inventory control for
substitutable products, Available at SSRN 3866775.

Talluri, K. and G. Van Ryzin (2004) Revenue management under a general discrete choice model
of consumer behavior, Management Science, 50 (1) 15–33.

Train, K. E. (2009) Discrete choice methods with simulation, Cambridge university press.

	List of Tables
	List of Formulations
	Introduction
	Methodology
	MILP formulation
	Continuous reformulation
	Spatial Branch and Bound algorithm

	Results and discussion
	Conclusions
	References

