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Abstract

In the field of choice modeling, the availability of ever-larger datasets has the potential to
significantly expand our understanding of human behavior, but this prospect is limited
by the poor scalability of discrete choice models (DCMs): as sample sizes increase, the
computational cost of maximum likelihood estimation quickly becomes intractable for
anything but trivial model structures. To tackle this issue, this study builds upon the
work of Lederrey et al. (2021) and the adaptive batch size algorithm they propose for the
estimation of DCMs. Specifically, we investigate the use of a dataset reduction technique
to generate weighted batches that better represent the whole dataset and, as a result, lead
the optimization algorithm to faster convergence. We use a real-world dataset and models
of different sizes to compare the performance of our approach with existing methods used
in practice.
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1 Introduction

Big data has caused a surge in the amount of data collected on practically any object of
study. In the field of discrete choice analysis, the availability of these ever-larger datasets
could improve our understanding of human decision-making, but that prospect is limited
by the poor scalability of estimation methods for discrete choice models (DCMs).

DCMs are usually estimated via maximum likelihood estimation, which most often relies
on optimization algorithms such as Newton’s method, BFGS (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970), or one of their variations. These algorithms are
extremely effective when estimating simple models on small datasets, but they quickly
become computationally expensive as model complexity and dataset sizes grow. To
circumvent this limitation, Lederrey et al. (2021) recently proposed using stochastic
approximations of these methods to estimate DCMs. Similar to the stochastic gradient
descent method used to train neural networks, a crucial feature of the algorithms developed
by Lederrey et al. (2021) is the use of subsets of data—or batches —of increasing size
throughout the optimization process: at each iteration, a new batch is randomly drawn
whose size is determined according to the advancement of the process, until the full dataset
is eventually reached and the algorithm converges to the maximum likelihood estimates
of the model parameters. Lederrey et al. (2021) empirically demonstrate that the use of
batches in the earlier stages of the optimization significantly contribute to reducing the
total computational time of model estimation.

This study builds upon the idea of using batches and adaptive batch sizes for the estimation
of DCMs. Namely, we propose a procedure called stochastic adaptive resampling —or
STAR —that leverages the dataset reduction technique proposed by Ortelli et al. (2022,
2023) to generate batches of weighted observations that mimic the full dataset. Our
procedure follows an adaptive batch-size updating scheme that relies on the performance
of the optimization algorithm to select appropriate batch sizes at each iteration. In
doing so, we seek to better guide the optimization algorithm during its earlier stages,
while maintaining a low computational cost per iteration. While further confirmatory
experiments are still needed, our method could theoretically offer significant time savings
irrespective of the iterative optimization algorithm it is used in conjunction with.

The rest of this paper is organized as follows: Section 2 describes how the STAR procedure
works; Section 3 presents some preliminary results obtained by using our procedure to
estimate three logit models on a relatively large dataset; finally, Section 4 summarizes the
findings of this study and identifies directions for future research.
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2 Methodology

2.1 Preliminaries

Suppose a dataset N that contains N observations of choices made by individuals in a
context that offers J alternatives. Each observation (xn, in) ∈ N consists of a vector xn

of explanatory variables, together with the chosen alternative in. In its simplest form, a
choice model P (i |xn; θ) calculates the probability that the decision-maker associated
with observation n chooses alternative i, in the context described by xn. Additionally,
θ ∈ RK is a vector of K parameters to be estimated via maximum likelihood estimation
(MLE), which consists in maximizing the joint probability of all observed choices in the
dataset N . For numerical reasons, however, the log likelihood function is used instead:

max
θ

L(θ) = max
θ

N∑
n=1

logP (in |xn;θ) . (1)

The optimization problem of (1) is usually solved using Newton-based or quasi-Newton-
based optimization methods.1 Those rely on the gradient and Hessian — respectively, an
approximation of the Hessian — of the log likelihood to iteratively update an initial guess
of its maximum, until a certain stopping criterion is met. Inspired by Lederrey et al. (2021)
and their stochastic adaptive batch size algorithms, we propose using the dataset-reduction
method introduced in Ortelli et al. (2022, 2023), called LSH-DR, to generate a new batch
of weighted observations at each iteration of the optimization process.

The LSH-DR method relies on locality-sensitive hashing (LSH) to quickly partition a
dataset into groups of “similar” observations—or buckets —from which representative
observations are drawn and then weighted, so as to better imitate the original dataset. As
an example, suppose that LSH-DR is applied to a dataset N = {(xn, in) : n = 1, . . . , N}:
we denote by Ñ = {(xg, ig, Ng) : g = 1, . . . , G} a weighted sample built from N by
LSH-DR, where all (xg, ig) are observations from the original dataset— i.e., {(xg, ig) :

g = 1, . . . , G} ⊆ N —and {N1, . . . , NG} are their associated weights. The log likelihood
obtained on Ñ is calculated as

L̃(θ) =
G∑

g=1

Ng · logP (ig |xg;θ) . (2)

1We refer the reader to Lederrey et al. (2021) for an extensive review of said methods.
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The number of selected observations G indirectly depends on a parameter of the LSH-DR
method called the bucket width, that we denote as w. By changing the value of w, one
can choose an appropriate degree of similarity between observations within buckets: a
sufficiently small w only groups observations that are exactly identical, whereas greater
values result in fewer buckets that contain larger amounts of increasingly dissimilar
observations. Additional details may be found in Ortelli et al. (2022, 2023).

2.2 Stochastic adaptive resampling (STAR)

Our algorithm to solve the optimization problem of (1) is organized as follows.

Input The ingredients provided to the algorithm are:

• A dataset N ;
• An initial solution θ0;
• An initial bucket width w0.

Initialization The iteration number k is set to zero.

Iteration

1. With wk as an input, LSH-DR is used to create a new, weighted sample N ∗
k .

2. A new candidate solution θk+1 is built using an optimization method such as Newton,
BFGS, or one of their variations. The log likelihood is computed using N ∗

k , as in (2).
3. The new bucket width wk+1 is calculated as

wk+1 = wk ·min

(
1,

||∇relL(θk+1)||
||∇relL(θk)||

)
, (3)

where ∇relL(θk) is the relative gradient of L(θk); each of its components is given by

[∇relL(θ)]j = [∇L(θ)]j ·
θj

L(θ)
. (4)

4. If ||∇relL(θk+1)|| is smaller than a certain threshold, the algorithm stops. Otherwise,
k is incremented by one and the algorithm moves to the next iteration.
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3 Experiment

We demonstrate the validity of our approach by estimating three multinomial logit (MNL)
models of increasing complexity on the London passenger mode choice data (Hillel et al.,
2018). The dataset consists of more than 81’000 trip records collected over three years,
combined with systematically matched trip trajectories alongside their corresponding
mode alternatives. Four alternatives are distinguished. The three models are borrowed
from (Hillel, 2019); we refer to them as “MNL-S”, “MNL-M” and “MNL-L”. Table 1 reports
the number of parameters and explanatory variables they include.

Table 1: Complexity of the MNL-S, MNL-M and MNL-L models.

MNL-S MNL-M MNL-L

Continuous variables 10 11 13
Binary variables 0 15 18
Parameters 13 53 100

We evaluate the benefits of using the STAR procedure in conjunction with the implemen-
tation of the Newton trust region (NTR) algorithm available in Biogeme (Bierlaire, 2023);
the code is therefore modified to accommodate the resampling of the data at each iteration.
Moreover, we test several values for w0, the initial bucket width: each model is estimated
100 times for each of those and the obtained results are compared with the standard
NTR algorithm. All model estimations are performed on two Intel Xeon Platinum 8360Y
processors running at 2.4 GHz, with a total of 72 cores and 512 GB of RAM.

Figure 1 shows the obtained execution times for the standard NTR algorithm — in gray —
and for NTR-STAR — in blue.2 As one can see, some values of w0 allow the NTR-STAR
to outperform the standard NTR algorithm by a significant margin, both for the MNL-M
and MNL-L. As regards the MNL-S, it seems that the standard NTR performs better. In
reality, and as shown in Figure 2, the estimation time is actually lower for NTR-STAR, but
the additional time needed to generate the samples outweighs the savings in estimation
time. One should also note that the performance of NTR-STAR is dependent on the
value of w0, and the “optimal” value of w0 seems to be dependent on the model. Indeed,
the minimum execution times appear to be reached at w0 = 0.2, w0 = 2 and w0 = 1 for
the small, medium and large models, respectively. This constitutes a limitation of our
approach: indeed, it would be preferable for the bucket width to be adapted dynamically,
so as to mitigate the effects of a poorly chosen w0.

2The execution time is to be understood as the sum of the sampling and estimation times.

4



Stochastic adaptive resampling for the estimation of DCMs June 6, 2023

Figure 1: Execution times of the NTR-STAR (blue) and standard NTR (gray) algorithms.
The models are estimated 100 times for each value of w0.
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Figure 2: Estimation times of the NTR-STAR (blue) and standard NTR (gray) algorithms.
The models are estimated 100 times for each value of w0.
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Finally, tables 2–4 display additional results of our experiments, including the number
iterations, the number of epochs and the achieved speedup in comparison to the standard
NTR algorithm. It is worth noting that the number of epochs required by NTR-STAR to
converge is lower in almost all cases, which implies that our method improves the way
data is used within the optimization algorithm.

Table 2: Comparison of the NTR and NTR-STAR algorithms for the MNL-S model.

Method Iterations Epochs Exe. time [ s ] Speedup

NTR 9.0 ± 0.0 9.0 ± 0.0 0.80 ± 0.06 —
NTR-STAR:
w0 = 0.2 8.9 ± 1.1 3.8 ± 1.0 1.51 ± 0.16 0.53
w0 = 0.5 10.5 ± 1.6 3.8 ± 0.9 1.76 ± 0.34 0.45
w0 = 1 12.5 ± 2.8 3.8 ± 1.0 2.27 ± 0.65 0.35
w0 = 2 14.5 ± 3.2 4.3 ± 1.3 2.72 ± 0.69 0.29
w0 = 5 16.5 ± 2.7 4.4 ± 1.3 3.15 ± 0.54 0.25

Table 3: Comparison of the NTR and NTR-STAR algorithms for the MNL-M model.

Method Iterations Epochs Exe. time [ s ] Speedup

NTR 7.0 ± 0.0 7.0 ± 0.0 73.6 ± 2.8 —
NTR-STAR:
w0 = 0.2 7.0 ± 0.3 5.9 ± 0.3 71.2 ± 5.3 1.03
w0 = 0.5 7.2 ± 0.5 4.6 ± 0.5 60.6 ± 7.4 1.21
w0 = 1 7.8 ± 0.5 4.2 ± 0.4 52.0 ± 6.1 1.42
w0 = 2 8.2 ± 0.6 3.6 ± 0.5 48.2 ± 6.8 1.53
w0 = 5 13.7 ± 3.4 5.0 ± 1.6 67.0 ± 18.7 1.10

Table 4: Comparison of the NTR and NTR-STAR algorithms for the MNL-L model.

Method Iterations Epochs Exe. time [ s ] Speedup

NTR 9.0 ± 0.0 9.0 ± 0.0 1004 ± 10 —
NTR-STAR:
w0 = 0.2 9.2 ± 0.7 8.3 ± 0.7 1030 ± 90 0.97
w0 = 0.5 9.2 ± 0.8 7.2 ± 0.8 918 ± 99 1.09
w0 = 1 9.5 ± 1.1 6.2 ± 1.1 812 ± 142 1.24
w0 = 2 13.2 ± 4.0 7.2 ± 2.6 948 ± 322 1.06
w0 = 5 22.6 ± 3.4 11.5 ± 2.1 1531 ± 274 0.66
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4 Conclusion

In this study, we propose a simple method that generates batches of observations to
be used within a stochastic optimization algorithm, as well as an adaptive batch-size
updating scheme that relies on the performance of each iteration to select appropriate
batch sizes for the following ones. Our method leverages a dataset reduction technique
that generates weighted subsamples, so as to better guide the optimization algorithm,
while saving substantial amounts of time at each iteration. The presented preliminary
results highlight the potential of this approach on the estimation of multinomial logit
models of medium to large sizes.

Intended future work will focus the development of an improved batch-size updating
scheme. We believe that more appropriate indicators of the quality of an iteration could
be derived, so as to give our method the ability to adapt more dynamically to poorly
chosen initial bucket widths.
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